pp 1–17 | Cite as

Co doped YbFeO3: exploring the electrical properties via tuning the doping level

  • O. PolatEmail author
  • M. Coskun
  • F. M. Coskun
  • J. Zlamal
  • B. Zengin Kurt
  • Z. Durmus
  • M. Caglar
  • A. Turut
Original Paper


The magnetic and electrical features of rare-earth orthoferrites, RFeO3, can be modified via substitution of different elements into R and/or Fe sites. In the present investigation, the electrical properties of YbFeO3 (YbFO) were inspected with cobalt (Co) doping into Fe sites by various mole %. The crystalline morphology of the obtained YbFeO3 and YbFe1-xCoxO3 (YbFCO) (x = 0.01, 0.05, 0.10) powders was studied by X-ray diffractometer (XRD) and infrared (IR) spectroscopy measurements. Surface structure of the obtained powders was scrutinized by scanning electron microscope (SEM). Furthermore, X-ray photoelectron spectroscopy (XPS) was employed for identifying the oxidation states of the synthesized components. Dielectric/impedance spectroscopy measurements were conducted to investigate electrical features of the YbFO and YbFCO powders at different frequencies and temperatures. It turned out that the conductivity and the dielectric constant of undoped YbFO can be boosted by Co doping into Fe sites. The present study underscored that multiple models need to be taken into account for the studied materials to explain conduction mechanism.


YbFeO3 Cobalt doping Solid-state reaction Powder Electric modulus Dielectric constant Conductivity 


Funding information

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Grant No. 116F025.

Supplementary material

11581_2019_2934_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1546 kb)


  1. 1.
    Polat O, Coskun M, Coskun FM, Durmus Z, Caglar M, Turut A (2018) Os doped YMnO3 multiferroic: a study investigating the electrical properties through tuning the doping level. J Alloys Compd 752:274–288CrossRefGoogle Scholar
  2. 2.
    Polat O, Durmus Z, Coskun FM, Coskun M, Turut A (2018) Engineering the band gap of LaCrO3 doping with transition metals (co, Pd and Ir). J Mater Sci 53:3544–3556CrossRefGoogle Scholar
  3. 3.
    Cao S, Zhao H, Kang B, Zhang J, Ren W (2014) Temperature induced spin switching in SmFeO3 single crystal. Sci Rep 4:5960CrossRefGoogle Scholar
  4. 4.
    Tokunaga Y, Taguchi Y, Arima T, Tokura Y (2012) Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat Phys 8:838–844CrossRefGoogle Scholar
  5. 5.
    Slawinski W, Przeniosko R, Sosnowska I, Suard E (2005) Spin reorientation and structural changes in NdFeO3. J Phys Condens Matter 17:4605–4614CrossRefGoogle Scholar
  6. 6.
    Jong JA, Kimel AV, Pisarev RV, Kirilyuk A, Rasing T (2011) Laser-induced ultrafast spin dynamics in ErFeO3. Phys Rev B 84:104421CrossRefGoogle Scholar
  7. 7.
    Kumar D, Thangappan R, Jayavel R (2017) Synthesis and characterization of LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. J Phys Chem Solids 101:25–33CrossRefGoogle Scholar
  8. 8.
    Niu X, Du W, Du W (2004) Preparation, characterization and gas-sensing properties of rare earth mixed oxides. Sensors Actuators B 99:399–404CrossRefGoogle Scholar
  9. 9.
    Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139:1–23CrossRefGoogle Scholar
  10. 10.
    Hung M-H, Rao MVM, Tsai D-S (2007) Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Mater Chem Phys 101:297–302CrossRefGoogle Scholar
  11. 11.
    Bidrawn F, Kima G, Aramrueang N, Vohs JM, Gorte RJ (2010) Dopants to enhance SOFC cathodes based on Sr-doped LaFeO3 and LaMnO3. J Power Sources 195:720–728CrossRefGoogle Scholar
  12. 12.
    Nagata Y, Yashiro S, Mitsuhashi T, Koriyama A, Kawashima Y, Samata H (2001) Magnetic properties of RFe1-xMnxO3 (R = Pr, Gd, Dy). J Magn Magn Mater 237:250–260CrossRefGoogle Scholar
  13. 13.
    Khetre SM, Chopade AU, Khilare CJ, Kulal SR, Jadhav HV, Jagadale PN, Bangale SV, Bamane SR (2014) Ethanol gas sensing properties of nano-porous LaFeO3 thick films. J Shivaji Univ (Sci Technol) 41(2):250–5347Google Scholar
  14. 14.
    Yuan XP, Tang YK, Sun Y, Xu MX (2012) Structure and magnetic properties of Y1-xLuxFeO3 (0 ≤ x ≤ 1) ceramics. J Appl Phys 111:053911CrossRefGoogle Scholar
  15. 15.
    Deka B, Ravi S, Perumal A, Pamu D (2017) Effect of Mn doping on magnetic and dielectric properties of YFeO3. Ceram Int 43:1323–1334CrossRefGoogle Scholar
  16. 16.
    Madolappa S, Ponraj B, Bhimireddi R, Varma KBR (2017) Enhanced magnetic and dielectric properties of Ti-doped YFeO3 ceramics. J Am Ceram Soc 100:2641–2650CrossRefGoogle Scholar
  17. 17.
    Ishihara T, Furutani H, Honda M, Yamada T, Shibayama T, Akbay T, Sakai N, Yokokawa H, Takita Y (1999) Improved oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2Oa by doping co. Chem Mater 11:2081–2088CrossRefGoogle Scholar
  18. 18.
    Feng G, Xue Y, Shen H, Feng S, Li L, Zhou J, Yang H, Xu D (2012) Sol-gel synthesis, solid sintering, and thermal stability of single phase YCoO3. Phys Status Solidi 209:1219–1224CrossRefGoogle Scholar
  19. 19.
    Cui J, Wang J, Fan W, Wan Y, Zhang X, Li G, Wu K, Cheng Y, Zhou J (2017) Porous YFe0.5Co0.5O3 thin sheets as cathode for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 42:20164–20175CrossRefGoogle Scholar
  20. 20.
    Iida H, Koizumi T, Uesu Y, Kohn K, Ikeda N, Mori S, Haumont R, Janolin PE, Kiat JM, Fukunaga M, Noda Y (2012) Ferroelectricity and ferrimagnetism of hexagonal YbFeO3 thin films. J Phys Soc Jpn 81:024719CrossRefGoogle Scholar
  21. 21.
    Cao S, Sinha K, Zhang X, Wang X, Yin Y, N'Diaye AT, Wang J, Keavney DJ, Paudel TR, Liu Y, Cheng X, Tsymbal EY, Dowben PA, Xu X (2017) Electronic structure and direct observation of ferrimagnetism in multiferroic hexagonal YbFeO3. Phys Rev B 95:224428CrossRefGoogle Scholar
  22. 22.
    Bossak AA, Graboy IE, Gorbenko OY, Kaul AR, Kartavtseva MS, Svetchnikov VL, Zandbergen HW (2004) XRD and HREM studies of Epitaxially stabilized hexagonal Orthoferrites RFeO3 (R = Eu−Lu). Chem Mater 16:1751–1755CrossRefGoogle Scholar
  23. 23.
    Kumar MSV, Kuribayashi K, Kitazono K (2009) Effect of oxygen partial pressure on the formation of metastable phases from an undercooled YbFeO3 melt using an aerodynamic levitator. J Am Ceram Soc 92:903–910CrossRefGoogle Scholar
  24. 24.
    Downie LJ, Goff RJ, Kockelmann W, Forder SD, Parker JE, Morrison FD, Lightfoot P (2012) Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M=Y, Yb, in). J Solid State Chem 190:52–60CrossRefGoogle Scholar
  25. 25.
    Nishimura T, Hosokaw S, Masuda Y, Wada K, Inoue M (2013) Synthesis of metastable rare-earth–iron mixed oxide with the hexagonal crystal structure. J Solid State Chem 197:402–407CrossRefGoogle Scholar
  26. 26.
    Zhou Z, Guo L, Yang H, Liu Q, Ye F (2014) Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J Alloys Compd 583:21–31CrossRefGoogle Scholar
  27. 27.
    Yuan S, Chang F, Cao Y, Wang X, Kang B, Zhang J, Cao S (2012) Cluster-glass behavior correlated with spin reorientation in Yb1−xPrxFeO3. Appl Phys A 109:757–762CrossRefGoogle Scholar
  28. 28.
    Wejrzanowski T, Pielaszek R, Opalińska A, Matysiak H, Lojkowski W, Kurzydlowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208CrossRefGoogle Scholar
  29. 29.
    Pielaszek R (2003) Analytical expression for diffraction line profile for polydispersive powders. Appl. Crystallography, proceedings of the XIX conference, Krakow, Poland, 43–50Google Scholar
  30. 30.
    Hanh N, Quy OK, Thuy NP, Tung LD, Spinu L (2003) Synthesis of cobalt ferrite Nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties. Phys B Condens Matter 327:382–384CrossRefGoogle Scholar
  31. 31.
    Ye JL, Wang CC, Ni W, Sun XH (2014) Dielectric properties of ErFeO3 ceramics over a broad temperature range. J Alloys Compd 617:850–854CrossRefGoogle Scholar
  32. 32.
    Ho C-T, Weng T-H, Wang C-Y, Yen S-J, Yew T-R (2014) Tunable band gaps of Co3-xCuxO4 nanorods with various cu doping concentrations. RSC Adv 4:20053–20057CrossRefGoogle Scholar
  33. 33.
    Muchuweni E, Sathiaraj TS, Nyakotyo H (2016) Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram Int 42:10066–10070CrossRefGoogle Scholar
  34. 34.
    Benouis CE, Benhaliliba M, Sanchez Juarez A, Aida MS, Chami F, Yakuphanoglu F (2010) The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films. J Alloys Compd 490:62–67CrossRefGoogle Scholar
  35. 35.
    Murphy TE, Moazzami K, Phillips JD (2006) Trap-related photoconductivity in ZnO epilayers. J Electron Mater 35:543–549CrossRefGoogle Scholar
  36. 36.
    Merino NA, Barbero BP, Eloy P, Cadus LE (2006) La1-xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Appl Surf Sci 253:1489–1493CrossRefGoogle Scholar
  37. 37.
    Macedo PB, Moynihan CT, Bose R (1972) The longtime aspects of this correlation function, which are obtainable by bridge techniques at temperatures approaching the glass transition. Phys Chem Glasses 13:171Google Scholar
  38. 38.
    Liu J, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR (2003) Dielectric permittivity and electric modulus in Bi2Ti4O11. J Chem Phys 119:2812–2819CrossRefGoogle Scholar
  39. 39.
    Angell CA (1990) Dynamic processes in ionic glasses. Chem Rev 90:523–542CrossRefGoogle Scholar
  40. 40.
    Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506CrossRefGoogle Scholar
  41. 41.
    Moynihan CT (1998) Description and analysis of electrical relaxation data for ionically conducting glasses and melts. Solid State Ionics 105:175–183CrossRefGoogle Scholar
  42. 42.
    Kim JS (2001) Electric Modulus spectroscopy of Lithium Tetraborate (Li2B4O7) single crystal. J Phys Soc Jpn 70:3129–3133CrossRefGoogle Scholar
  43. 43.
    Rouahi A, Kahouli A, Challali F, Besland MP, Vallee C, Yangui B, Salimy S, Goullet A, Sylvestre A (2013) Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J Phys D Appl Phys 46:065308CrossRefGoogle Scholar
  44. 44.
    Hammami H, Arous M, Lagache M, Kallel A (2007) Study of the interfacial MWS relaxation by dielectric spectroscopy in unidirectional PZT fibres/epoxy resin composites. J Alloys Compd 430:1–8CrossRefGoogle Scholar
  45. 45.
    Liu J, Duan C-G, Yin W-G, Mei WN, Smith RW, Hardy JR (2004) Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys Rev B 70:144106CrossRefGoogle Scholar
  46. 46.
    Hippel V (1954) Dielectrics and waves. Wiley, New YorkGoogle Scholar
  47. 47.
    Wagner KW (1936) The distribution of relaxation times in typical dielectrics. Physics 7:434–450CrossRefGoogle Scholar
  48. 48.
    Rathod KN, Thakrar K, Gadani K, Joshi Z, Dhruv D, Boricha H, Kansara S, Pandya DD, Asokan K, Solanki PS, Shah NA (2017) Structural, microstructural and dielectric behavior of sole gel grown nanostructured Y0.95Zr0.05MnO3. Mater Chem Phys 198:200–208CrossRefGoogle Scholar
  49. 49.
    Efremov DV, Van den Brink J, Khomskii DI (2004) Bond-versus site-centered ordering and possible ferroelectricity in manganites. Nat Mater 3:853–856CrossRefGoogle Scholar
  50. 50.
    Shivanand M, Ponraj B, Bhimireddi R, Varma KBR (2017) Enhanced magnetic and dielectric properties of Ti-doped YFeO3 ceramics. J Am Ceram Soc 100(6):2641–2650CrossRefGoogle Scholar
  51. 51.
    Nair VG, Das A, Subramanian V, Santhosh PN (2013) Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J Appl Phys 113:213907CrossRefGoogle Scholar
  52. 52.
    Smyth DM (2003) Comments on the defect chemistry of Undoped and acceptor-doped BaTiO3. J Electroceram 11:89–100CrossRefGoogle Scholar
  53. 53.
    Moos R, Menesklou W, Härdtl KH (1995) Hall mobility of undoped n-type conducting strontium titanate single crystals between 19 K and 1373 K. Appl Phys A 61:389–395CrossRefGoogle Scholar
  54. 54.
    Moos R, Härdtl KH (1996) Electronic transport properties of Sr1−xLaxTiO3 ceramics. J Appl Phys 80:393–400CrossRefGoogle Scholar
  55. 55.
    Hegab NA, El-Mallah HM (2009) AC conductivity and dielectric properties of amorphous Te42As36Ge10Si12 glass. Acta Phys Pol A 116:1048–1052CrossRefGoogle Scholar
  56. 56.
    Cao W, Gerhardt R (1990) Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics 42:213–221CrossRefGoogle Scholar
  57. 57.
    Abdel-Malak TG, Kassem ME, Aly NS, Kalil SM (1992) AC conductivity of cobalt phthalocyanine. Acta Phys Pol A 81:675–680CrossRefGoogle Scholar
  58. 58.
    Singh R, Tandon RP, Panwar VS, Chandra S (1991) Low-frequency a.C. Conduction in lightly doped polypyrrole films. J Appl Phys 69:2504CrossRefGoogle Scholar
  59. 59.
    Stevels TM (1957) The electrical properties of glasses. Handbook in Phys. Springer, Berlin, p 350Google Scholar
  60. 60.
    Popandian N, Balay P, Narayanasamy A (2002) Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J Phys Condens Matter 14:3221–3237CrossRefGoogle Scholar
  61. 61.
    Huang S, Shi L, Tian Z, Yuan S, Wang L, Gong G, Yin C, Zerihum G (2015) High-temperature colossal dielectric response in RFeO3 (R=La, Pr and Sm) ceramics. Ceram Int 41:691–698CrossRefGoogle Scholar
  62. 62.
    Zhang L, Chen XM (2009) Dielectric relaxation in LuFeO3 ceramics. Solid State Commun 149:1317–1321CrossRefGoogle Scholar
  63. 63.
    Rezlescu N, Rezlescu E (1974) Dielectric properties of copper containing ferrites. Phys Status Solidi A 23:575–582CrossRefGoogle Scholar
  64. 64.
    Jonker GH (1959) Analysis of the semiconducting properties of cobalt ferrite. J Phys Chem Solids 9:165–175CrossRefGoogle Scholar
  65. 65.
    Chang FG, Song GL, Fang K, Zeng QJ (2006) Effect of gadolinium substitution on dielectric properties of bismuth ferrite. J Rare Earths 24:273–276CrossRefGoogle Scholar
  66. 66.
    Nongjai R, Khan S, Asokan K, Ahmed H, Khan I (2012) Magnetic and electrical properties of in doped cobalt ferrite nanoparticles. J Appl Phys 112:084321–084328CrossRefGoogle Scholar
  67. 67.
    Haron W, Thaweechai T, Wattanathana W, Laobuthee A, Manaspiya H, Veranitisagul C, Koonsaeng N (2013) Structural characteristics and dielectric properties of La1-xCoxFeO3 and LaFe1-xCoxO3 synthesized via metal organic complexes. Energy Procedia 34:791–800CrossRefGoogle Scholar
  68. 68.
    Iida H, Koizumi T, Uesu Y (2011) Physical properties of new multiferroic hexagonal YbFeO3 thin film. Phase Transit 84:747–752CrossRefGoogle Scholar
  69. 69.
    Jeong YK, Lee JH, Ahn SJ, Song SW, Jang HM, Choi H, Scott JF (2012) Structurally tailored hexagonal ferroelectricity and Multiferroism in epitaxial YbFeO3 thin-film Heterostructures. J Am Chem Soc 134:1450–1453CrossRefGoogle Scholar
  70. 70.
    Iwachi K (1971) Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn J Appl Phys Part 1 10:1520–1528CrossRefGoogle Scholar
  71. 71.
    Xia W, Wang CC, Liu P, Ye JL, Ni W (2013) Colossal dielectric behavior in TbFeO3 ceramics. Curr Appl Phys 13:1743–1745CrossRefGoogle Scholar
  72. 72.
    Yuvaraj S, Layek S, Vidyavathy SM, Yuvaraj S, Meyrick D, Selvan RK (2015) Electrical and magnetic properties of spherical SmFeO3 synthesized by aspartic acid assisted combustion method. Mater Res Bull 72:77–82CrossRefGoogle Scholar
  73. 73.
    Idrees M, Nadeem M, Hassan MM (2010) Investigation of conduction and relaxation phenomena in LaFe0.90Ni0.1O3 by impedance spectroscopy. J Phys D Appl Phys 43:155401CrossRefGoogle Scholar
  74. 74.
    Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  75. 75.
    Jonscher AK (1996) Universal relaxation law. Chelsea Dielectric Press, LondonGoogle Scholar
  76. 76.
    Dhahri A, Rhou FIH, Dhahri J, Dhahri E, Valente MA (2011) Structural and electrical characteristics of rare earth simple perovskite oxide La0.57Nd0.1Pb0.33Mn0.8Ti0.2O3. Solid State Commun 151:738–742CrossRefGoogle Scholar
  77. 77.
    Jung WH (2008) AC conduction mechanisms of Gd1/3Sr2/3FeO3 ceramic. Physica B 403:636–638CrossRefGoogle Scholar
  78. 78.
    Wang K, Chen H, Shen WZ (2003) AC electrical properties of nanocrystalline silicon thin films. Physica B 336:369–378CrossRefGoogle Scholar
  79. 79.
    Abdelmoneim HM (2010) Dielectric and AC conductivity οf potassium perchlorate, KCLO4. Acta Phys Pol A 117:936–940CrossRefGoogle Scholar
  80. 80.
    Tang P, Yu L, Min J, Yang J, Chen H (2017) Preparation of nanocrystalline YbFeO3 by sol-gel method and its visible-light photocatalytic activities. Ferroelectrics 521(1):71–76CrossRefGoogle Scholar
  81. 81.
    Tan S, Yue S, Zhang YH (2003) Phys Lett A 319:530–538CrossRefGoogle Scholar
  82. 82.
    Jayabal P, Sasirekha V, Mayandi J, Jeganathan K, Ramakrishnan V (2014) A facile hydrothermal synthesis of SrTiO3 for dye sensitized solar cell application. J Alloys Compd 586:456–461CrossRefGoogle Scholar
  83. 83.
    Shi J, Zong S, Hu Y, Guan X, Luo J, Shang Y, Li G, Liu D, Wang X, Guo P (2016) Continuous solid solutions of Na0.5La0.5TiO3–LaCrO3 for photocatalytic H2 evolution under visible-light irradiation. RSC Adv 6:51801CrossRefGoogle Scholar
  84. 84.
    Vaqueiro P, Lopez-Quintela MA (1997) Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-gel method. Chem Mater 9:2836–2841CrossRefGoogle Scholar
  85. 85.
    Vaqueiro P, Lopez-Quintela MA (1998) Synthesis of yttrium aluminium garnet by the citrate gel process. J Mater Chem 8:161–163CrossRefGoogle Scholar
  86. 86.
    Ma Y, Chen XM, Lin YQ (2008) Relaxorlike dielectric behavior and weak ferromagnetism in YFeO3 ceramics. J Appl Phys 103:124111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • O. Polat
    • 1
    • 2
    Email author
  • M. Coskun
    • 3
  • F. M. Coskun
    • 3
  • J. Zlamal
    • 1
    • 2
  • B. Zengin Kurt
    • 4
  • Z. Durmus
    • 5
  • M. Caglar
    • 6
  • A. Turut
    • 3
  1. 1.CEITEC BUTBrno University of TechnologyBrnoCzech Republic
  2. 2.Institute of Physical EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.Faculty of Engineering and Natural Sciences, Department of Engineering PhysicsIstanbul Medeniyet UniversityIstanbulTurkey
  4. 4.Faculty of Pharmacy, Department of Pharmaceutical ChemistryBezmialem Vakif UniversityIstanbulTurkey
  5. 5.Baglar Mah., Gunesli KonutlarIstanbulTurkey
  6. 6.Faculty of Science, Department of PhysicsEskisehir Technical UniversityEskisehirTurkey

Personalised recommendations