, Volume 25, Issue 4, pp 1699–1706 | Cite as

Water-suspended graphene as electrolyte additive in zinc-air alkaline battery system

  • K. Kishore Kumar
  • R. Brindha
  • M. Nandhini
  • M. SelvamEmail author
  • K. Saminathan
  • K. Sakthipandi
Original Paper


Zinc-air (Zn-air) batteries possess high-energy density due to surplus air involved in reduction reaction at air cathode and are an important energy source used for automobiles and grid storage. In this study, the scope of improvements in the efficiency of Zn-air batteries are investigated through addition of water-soluble graphene (WSG) as a corrosion inhibitor in 1 M KOH electrolyte. Phase and microstructure analysis for the synthesized WSG shows the formation of few layers of graphene due to the presence of an intense XRD peak of carbon at 26.3° and the flake-like structure confirmed by SEM. The discharge capacity, corrosion behavior, and electrochemical impedance analysis performed on conventional Zn-air battery shows improved performance when tested with WSG as an additive in 1 M KOH electrolyte. Results from short-circuit test show that immersion of WSG in 1 M KOH electrolyte increased the current density from 20.3 to 26.43 mAcm−2. Whereas, galvanostatic discharge measurement reveals that Zn-air battery in WSG added with 1 M KOH electrolyte has a specific discharge capacity of ~ 212.6 mAhg−1 higher than that obtained in 1 M KOH electrolyte (~ 160.4 mAhg−1).Overall, the WSG-based Zn-air battery shows good self-discharge capacity and higher electrochemical activity during discharge holds promise as an electrolyte additive for Zn-air system.


Zinc-air battery Electrochemical property Graphene Corrosion resistance Discharge 



One of the authors, M. Selvam, is thankful to the Department of Science and Technology (DST), New Delhi, for providing the INSPIRE fellowship (IF110749) to carry out this research work.


  1. 1.
    Wang X, Sebastian PJ, Smit MA, Hongping Y, Gamboa SA (2003) Studies on the oxygen reduction catalyst for zinc–air battery electrode. J Power Sources 124:278–284CrossRefGoogle Scholar
  2. 2.
    Caramia V, Bozzini B (2014) Materials science aspects of zinc–air batteries: a review. Mater Renew Sustain Energy 3:28CrossRefGoogle Scholar
  3. 3.
    Pollet BG, Staffell I, Shang JL (2012) Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects. Electrochim Acta 84:235–249CrossRefGoogle Scholar
  4. 4.
    Linden D, Reddy TB (2001) Zinc/Air Batteries—Button Configuration. Handbooks of batteries, Chapter 13. McGraw-HillGoogle Scholar
  5. 5.
    Yang CC, Lin SJ (2002) Alkaline composite PEO-PVA-glass-fiber-mat polymer electrolyte for Zn-air battery. J Power Sources 112:497–503CrossRefGoogle Scholar
  6. 6.
    Omer AM (2008) Green energies and the environment. Renew Sust Energ Rev 12:1789–1821CrossRefGoogle Scholar
  7. 7.
    Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H (2011) A review on global solar energy policy. Renew Sust Energ Rev 15:2149–2163CrossRefGoogle Scholar
  8. 8.
    Saha P, Datta M, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66:1–86CrossRefGoogle Scholar
  9. 9.
    Dunn B, Kamath H, Tarascon (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  10. 10.
    Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 134:50Google Scholar
  11. 11.
    Kelly NA (2012) Direct solar photovoltaic charging of a high voltage nickel metal hydride traction battery. J Power Sources 209:105–119CrossRefGoogle Scholar
  12. 12.
    Li Y, Yan Z, Wang Q, Ye H, Li M, Zhu L, Cao X (2018) Ultrathin, highly branched carbon nanotube cluster with outstanding oxygen electrocatalytic performance. Electrochem Acta 282:224–232Google Scholar
  13. 13.
    Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ (2013) Highly active, nonprecious metal perovskite electro catalysts for bifunctional metal−air battery electrodes. J Phys Chem Lett 4:1254–1259CrossRefGoogle Scholar
  14. 14.
    Wang Q, Li Y, Wang K, Zhou J, Zhu L, Gu L, Hu J, Cao X (2017) Mass production of porous biocarbon self-doped by phosphorus and nitrogen for cost-effective zinc-air batteries. Electrochem Acta 257–250Google Scholar
  15. 15.
    Othman R, Yahaya AH, Arof AK (2013) Zinc-air cell with KOH-treated agar layer between electrode and electrolyte containing hydroponics gel. J New Mater Electrochem Syst 5(3):177–182Google Scholar
  16. 16.
    Othman R, Yahaya AH, Arof AK (2002) A zinc–air cell employing a porous zinc electrode fabricated from zinc–graphite-natural biodegradable polymer paste. J Appl Electrochem 32(12):1347–1353CrossRefGoogle Scholar
  17. 17.
    Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192CrossRefGoogle Scholar
  18. 18.
    Othman R, Basirun WJ, Yahaya AH, Arof AK (2001) Hydroponics gel as a new electrolyte gelling agent for alkaline zinc–air cells. J Power Sources 103(1):34–41CrossRefGoogle Scholar
  19. 19.
    Ming J, Park JB, Sun YK (2014) The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. Chem Commun 50:13307–13310CrossRefGoogle Scholar
  20. 20.
    Zhang T, Tao Z, Chen J (2014) Magnesium–air batteries: from principle to application. Mater Horizons 1:196–206CrossRefGoogle Scholar
  21. 21.
    Selvam M, Sakthipandi K, Suriyaprabha R, Saminathan K, Rajendran V (2013) Synthesis and characterization of electrochemical – reduced graphene. Bull Mater Sci 36(7):1315–1321CrossRefGoogle Scholar
  22. 22.
    Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20:258–262CrossRefGoogle Scholar
  23. 23.
    Liu J, Xue DF (2010) Hollow nanostructured anode materials for Li-ion batteries. Nanoscale Res Lett 1:525–1534Google Scholar
  24. 24.
    Ji LW, Lin Z, Alcoutlabi M, Zhang XW (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699CrossRefGoogle Scholar
  25. 25.
    Chae C, Kim JH, Kim JM, Sun YK, Lee JK (2012) Highly reversible conversion-capacity of MnO x-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes. J Mater Chem 22(2):17870CrossRefGoogle Scholar
  26. 26.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 2:3906–3924CrossRefGoogle Scholar
  27. 27.
    Chen Z-Y, Li Y-N, Lei L-L, Bao S-J, Wang M-Q, Heng-Liu, Zhao Z-L, Xu M-w (2017) Investigation of Fe2N@carbon encapsulated in N-doped graphene-like carbon as a catalyst in sustainable zinc–air batteries. Catal Sci Technol 7:5670–5676CrossRefGoogle Scholar
  28. 28.
    Luo J, Chen Y, Ma Q, Liu R, Liu X (2013) Layer-by-layer self-assembled hybrid multilayer films based on poly (sodium 4-styrenesulfonate) stabilized graphene with polyaniline and their electrochemical. RSC Adv 3:17866–17873CrossRefGoogle Scholar
  29. 29.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682CrossRefGoogle Scholar
  30. 30.
    Ankamwar B, Surti F (2012) Water soluble graphene synthesis. Chem Sci Trans 1(3):500–507CrossRefGoogle Scholar
  31. 31.
    Lan C-J, Tsung-Shune C, Lin PH, Perng TP (2006) Zn-Al alloy as a new anode-metal of a zinc-air battery. J New Mat Electrochem Syst 9:27–32Google Scholar
  32. 32.
    Zhang L, Yang X, Cai R, Chen C, Xia Y, Zhang H, Yang D, Yao X (2019) Air cathode of zinc–air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. Nanoscale 11:826–832CrossRefGoogle Scholar
  33. 33.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRefGoogle Scholar
  34. 34.
    Li C, Cheng F, Ji W, Tao Z, Chen J (2009) Magnesium microspheres and nanospheres: morphology-controlled synthesis and application in Mg/MnO2 batteries. Nano Res 2:713–721CrossRefGoogle Scholar
  35. 35.
    Huang G, Zhao Y, Wang Y, Zhang H, Pan F (2013) Performance of Mg–air battery based on AZ31 alloy sheet with twins. Mater Lett 11:346–349Google Scholar
  36. 36.
    Li ZF, Xie J, Stanciu L, Ren Y (2013) Nanostructured graphenes and metal oxides for fuel cell and battery applications. Adv Mater Res 705:126–131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Kishore Kumar
    • 1
  • R. Brindha
    • 1
  • M. Nandhini
    • 1
  • M. Selvam
    • 1
    Email author
  • K. Saminathan
    • 2
  • K. Sakthipandi
    • 3
  1. 1.Centre for Nano Science and TechnologyKS Rangasamy College of TechnologyTiruchengodeIndia
  2. 2.Department of ChemistryKongunadu Arts and Science collegeCoimbatoreIndia
  3. 3.Department of PhysicsSethu Institute of TechnologyKariapattiIndia

Personalised recommendations