Skip to main content
Log in

The effect of anode structure on the performance of NiO-BaZr0.1Ce0.7Y0.2O3-δ supported ceria-based solid oxide fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, two asymmetric NiO-BaZr0.1Ce0.7Y0.2O3-δ (NiO-BZCY) anode substrates were prepared via the phase-inversion tape casting method for Ce0.8Sm0.2O2-δ (SDC)-based solid oxide fuel cells. The results showed that the anode support structure significantly influenced the electrochemical properties of the cells. The cell supported on the anode substrate consisted of a finger-like layer and a sponge-like layer outputs highest electrochemical performance with a maximum power density of 823 mW cm−2 at 650 °C and shows great superiority over the cell fabricated by a typical dry-pressing method. The excellent performances demonstrate that the phase-inversion tape casting technique is a good strategy in fabricating anode supports for SOFCs, and the anode structure with the relatively dense sponge-like layer as top surface is optimal to construct the complete cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61:65–69

    Article  CAS  Google Scholar 

  2. Shao Z, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  CAS  PubMed  Google Scholar 

  3. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17–27

    Article  CAS  PubMed  Google Scholar 

  4. Suzuki T, Hasan Z, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2009) Impact of anode microstructure on solid oxide fuel cells. Science 325:852–855

    Article  CAS  PubMed  Google Scholar 

  5. Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0. 1Ce0. 7Y0. 2–xYbxO3–δ. Science 326:126–129

    Article  CAS  PubMed  Google Scholar 

  6. Dai H, Da'as EH, Shafi SP, Wang H, Bi L (2018) Tailoring cathode composite boosts the performance of proton-conducting SOFCs fabricated by a one-step co-firing method. J Eur Ceram Soc 38:2903–2908

    Article  CAS  Google Scholar 

  7. Ren C, Gan Y, Lee M, Yang C, He F, Jiang Y, Dong G, Green RD, Xue X (2016) Fabrication and characterization of high performance intermediate temperature micro-tubular solid oxide fuel cells. J Electrochem Soc 163:F1115–F1123

    Article  CAS  Google Scholar 

  8. Bi L, Fabbri E, Sun Z, Traversa E (2011) A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxidefuel cells (SOFCs) with proton-conducting Y-doped BaZrO3 films. Energy Environ Sci 4:409–412

    Article  CAS  Google Scholar 

  9. Yang RJ, Lee MC, Chang JC, Lin TN, Chang YC, Kao WX, Lee LS, Cheng SW (2012) Fabrication and characterization of a Sm0.2Ce0.8O1.9 electrolyte film by the spin-coating method for a low-temperature anode-supported solid oxide fuel cells. J Power Sources 206:111–118

    Article  CAS  Google Scholar 

  10. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172

    Article  CAS  Google Scholar 

  11. Doshi R, Richards VL, Carter JD, Wang X, Krumpelt M (1999) Development of solid-oxide fuel cells that operate at 500°C. J Electrochem Soc 146:1273–1278

    Article  CAS  Google Scholar 

  12. Gong Z, Sun W, Shan D, Wu Y, Liu W (2016) Tuning the thickness of Ba-containing "functional" layer toward high-performance ceria-based solid oxide fuel cells. ACS Appl Mater Interfaces 8:10835–10840

    Article  CAS  PubMed  Google Scholar 

  13. Sun W, Liu W (2012) A novel ceria-based solid oxide fuel cell free from internal short circuit. J Power Sources 217:114–119

    Article  CAS  Google Scholar 

  14. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939

    Article  CAS  PubMed  Google Scholar 

  15. Atkinson A (1997) Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95:249–258

    Article  CAS  Google Scholar 

  16. Huang H, Lin J, Wang Y, Wang S, Xia C, Chen C (2015) Facile one-step forming of NiO and yttrium-stabilized zirconia composite anodes with straight open pores for planar solid oxide fuel cell using phase-inversion tape casting method. J Power Sources 274:1114–1117

    Article  CAS  Google Scholar 

  17. Han Z, Wang Y, Yang Z, Han M (2016) Electrochemical properties of tubular sofc based on a porous ceramic support fabricated by phase-inversion method. J Mater Sci Technol 32:681–686

    Article  Google Scholar 

  18. Sun H, Chen Y, Yan R, Wei T, Zhang Y, Zhang Q, Bu Y, Liu M (2016) Anode-supported solid oxide fuel cells based on Sm0.2Ce0.8O1.9 electrolyte fabricated by a phase-inversion and drop-coating process. Int J Hydrog Energy 41:10907–10913

    Article  CAS  Google Scholar 

  19. Liu T, Wang Y, Zhang Y, Fang S, Lei L, Ren C, Chen F (2015) Steam electrolysis in a solid oxide electrolysis cell fabricated by the phase-inversion tape casting method. Electrochem Commun 61:106–109

    Article  CAS  Google Scholar 

  20. Kingsbury BFK, Li K (2009) A morphological study of ceramic hollow fibre membranes. J Membr Sci 328:134–140

    Article  CAS  Google Scholar 

  21. Sun W, Yan L, Shi Z, Zhu Z, Liu W (2010) Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3−δ electrolyte membrane. J Power Sources 195:4727–4730

    Article  CAS  Google Scholar 

  22. Lin J, Miao G, Xia C, Chen C, Wang S, Zhan Z (2017) Optimization of anode structure for intermediate temperature solid oxide fuel cell via phase-inversion cotape casting. J Am Ceram Soc 100:3794–3800

    Article  CAS  Google Scholar 

  23. Sun W, Shi Z, Liu M, Bi L, Liu W (2014) An easily sintered, chemically stable, barium zirconate-based proton conductor for high-performance proton-conducting solid oxide fuel cells. Adv Funct Mater 24:5695–5702

    Article  CAS  Google Scholar 

  24. Ling Y, Chen J, Wang Z, Xia C, Peng R, Lu Y (2013) New ionic diffusion strategy to fabricate proton-conducting solid oxide fuel cells based on a stable La2Ce2O7 electrolyte. Int J Hydrog Energy 38:7430–7437

    Article  CAS  Google Scholar 

  25. Van de Graaf JM, Kapteijn F, Moulijn JA (1998) Methodological and operational aspects of permeation measurements on silicalite-1 membranes. J Membr Sci 144:87–104

    Article  Google Scholar 

  26. Liu T, Ren C, Zhang Y, Wang Y, Lei L, Chen F (2017) Solvent effects on the morphology and performance of the anode substrates for solid oxide fuel cells. J Power Sources 363:304–310

    Article  CAS  Google Scholar 

  27. Taylor RP, McClain ST, Berry J (1999) Uncertainty analysis of metal-casting porosity measurements using Archimedes' principle. Int J Cast Met Res 11:247–257

    Article  Google Scholar 

  28. Liu T, Ren C, Fang S, Wang Y, Chen F (2014) Microstructure tailoring of the nickel oxide–yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells. ACS Appl Mater Interfaces 6:18853–18860

    Article  CAS  PubMed  Google Scholar 

  29. Zhang B, Wu K, Peng K (2018) Fabrication and characterization of Nd2-xInxCe2O7 proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. J Power Sources 399:157–165

    Article  CAS  Google Scholar 

  30. Chen X, Lin J, Sun L, Liu T, Wu J, Sheng Z, Wang Y (2019) Improvement of output performance of solid oxide fuel cell by optimizing the active anode functional layer. Electrochim Acta 298:112–120

    Article  CAS  Google Scholar 

  31. Bi L, Fabbri E, Traversa E (2012) Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem Commun 16:37–40

    Article  CAS  Google Scholar 

  32. Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier, Oxford, pp 149–168

  33. Lee KT, Yoon HS, Ahn JS, Wachsman ED (2012) Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells. J Mater Chem 22:17113–17120

    Article  CAS  Google Scholar 

  34. Zhang X, Robertson M, Yick S, Deĉes-Petit C, Styles E, Qu W, Xie Y, Hui R, Roller J, Kesler O, Maric R, Ghosh D (2006) Sm0.5Sr0.5CoO3+Sm0.2Ce0.8O1.9 composite cathode for cermet supported thin Sm0.2Ce0.8O1.9 electrolyte SOFC operating below 600°C. J Power Sources 160:1211–1216

    Article  CAS  Google Scholar 

  35. Sun W, Shi Z, Qian J, Wang Z, Liu W (2014) In-situ formed Ce0.8Sm0.2O2−δ@Ba(Ce, Zr)1−x(Sm, Y)xO3−δ core/shell electron-blocking layer towards Ce0.8Sm0.2O2−δ-based solid oxide fuel cells with high open circuit voltages. Nano Energy 8:305–311

    Article  CAS  Google Scholar 

  36. Bi L, Da'as EH, Shafi SP (2017) Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte. Electrochem Commun 80:20–23

    Article  CAS  Google Scholar 

  37. Bi L, Fabbri E, Traversa E (2018) Solid oxide fuel cells with proton-conducting La0. 99Ca0. 01NbO4 electrolyte. Electrochim Acta 260:748–754

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (Grant Nos. 21676261 and U1632131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Gong, Z., Hou, J. et al. The effect of anode structure on the performance of NiO-BaZr0.1Ce0.7Y0.2O3-δ supported ceria-based solid oxide fuel cells. Ionics 25, 3523–3529 (2019). https://doi.org/10.1007/s11581-019-02923-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02923-8

Keywords

Navigation