Advertisement

Ionics

pp 1–10 | Cite as

Ferroelectric properties and alternative current conduction mechanisms of lithium rubidium molybdate

  • W. Ben Nasr
  • A. Ben RhaiemEmail author
Original Paper
  • 25 Downloads

Abstract

The lithium rubidium molybdate compound LiRbMoO4 was prepared by the solid-state reaction method. XRD spectra revealed a single phase material with an orthorhombic structure. The internal Raman modes were observed at room temperature. The dielectric measurement exhibited three subsequent phase transitions: two structural transitions at the neighborhood of 397 K and 420 K followed by a ferro-paraelectric transition at 424 K. The Nyquist plot was proved to be a non-Debye relaxation mechanism. The combined spectroscopic plots of the imaginary part of electric impedance and modulus in the temperature range of 581–718 K at various frequencies confirmed the non-Debye behavior. The AC conductivity was found to follow the Jonscher’s universal dynamic law ωS, and the overlapping large polaron tunneling model (OLPT) was proposed to describe the conduction mechanism.

Keywords

Raman spectroscopy Ferroelectric properties Electrical conductivity Lithium rubidium molybdate 

Notes

References

  1. 1.
    Isupov VA (2005) Ferroelectric and ferroelastic phase transitions in molybdates and tungstates of monovalent and bivalent elements. Ferroelectrics 322:83–114CrossRefGoogle Scholar
  2. 2.
    Isupov VA (2005) Binary molybdates and tungstates of monoand trivalent elements as possible ferroelastics and ferroelectrics. Ferroelectrics 321:63–90CrossRefGoogle Scholar
  3. 3.
    Aleksandrov KS, Blat DH, Zinenko VI, Iskornev IM, Klevtsova RF, Klevtsov PV, Kruglik AI, Flerov IN (1985) Successive phase transitions in the MeLiBO4 type crystals. Ferroelectrics 63:13–28CrossRefGoogle Scholar
  4. 4.
    Zolotova ES, Solodovnikova ZA, Yudin VN, Solodovnikov SF, Khaikina EG, Basovich OM, Korolkov IV, Filatova IY (2016) Phase relations in the Na2MoO4–Cs2MoO4 and Na2MoO4–Cs2MoO4– ZnMoO4 systems, crystal structures of Cs3Na (MoO4)2 and Cs3NaZn2 (MoO4)4. Sol State Chem 233:23–29CrossRefGoogle Scholar
  5. 5.
    Ghosh SK, Rout SK, Tiwari A, Yadav P, Sczancoski JC, Filho MGR, Cavalcante LS (2015) Structural refinement, Raman spectroscopy, optical and electrical properties of (Ba1-xSrx)MoO4 ceramics. J Mater Sci 16:8319–8335Google Scholar
  6. 6.
    Shigematsu H, Nomura K, Nishiyama K, Tojo T, Kawaji H, Atake T, Kawamura Y, Miyoshi T, Matsushita Y, Tanaka M, Mashiyama H (2011) Structures and phase transitions in Rb2MoO4 and Rb2WO4. J Ferroelectrics 414:195–200CrossRefGoogle Scholar
  7. 7.
    Lima CL, Saraiva GD, Freire PTC, Maczka M, Paraguassu W, de Sousae FF, Mendes Filho J (2011) Temperature-induced phase transformations in Na2WO4and Na2MoO4 crystals. J Raman Spectrosc 42:799–802CrossRefGoogle Scholar
  8. 8.
    Zolotova ES, Solodovnikova ZA, Ayupov BM, Solodovnikov SF (2011) Phase formation in the Li2MoO4-A2MoO4-NiMoO4 (A = K, Rb, Cs) systems, the crystal structure of Cs2Ni2(MoO4)3, and color characteristics of alkali-metal nickel molybdates. J Inorg Chem 56:1216–1221Google Scholar
  9. 9.
    Gatehouse BM, Leverett P (1969) Crystal structure of potassium molybdate K2MoO4. Chem Soc 56:849–854CrossRefGoogle Scholar
  10. 10.
    Aitahsaine H, Zbair M, Ezahri M, Benlhachemi A, Arab M, Bakiz B, Guinneton F, Gavarri JR (2015) Rietveld refinements, impedance spectroscopy and phase transition of the polycrystalline ZnMoO4 ceramics. Ceram Int 41:15193–15201CrossRefGoogle Scholar
  11. 11.
    Mahadevan Pillai VP, Pradeep T, Bushiri MJ, Jayasree RS, Nayar VU (1997) Vibrational spectroscopic studies of FeClMoO4, Na2MoO4 and Na2MoO4·2H2O/D2O. Spectrochim Acta A 53:867–876CrossRefGoogle Scholar
  12. 12.
    Asano T, Nishimura T, Ichimura S, Inagaki Y, Kawae T, Fukui T, Narumi YK, Kindo TI, Haravifard S, Gaulin BD (2011) Magnetic ordering and tunable structural phase transition in the chromic compound CuMoO4. Phys Soc Jpn 80:093708CrossRefGoogle Scholar
  13. 13.
    Makitova DD, Tkachev VV, Atovmyan LO (2007) Crystal structures of some crystal hydrates of binary molybdates. Coordination Chemistry 33:772–273CrossRefGoogle Scholar
  14. 14.
    Aleksandrov KS, Anistratov AT, Melnikova SV, Klevtsov PV, Kruglik AI, Voronov VN (1981) Ferroelectricity in caesium lithium molybdate CsLiMoO4 and related crystals CsLiWO4 and RbLiMoO4. Ferroelecrrics 36:399–402CrossRefGoogle Scholar
  15. 15.
    Saraiva GD, Paraguassub W, Freire PTC, Ramiro de Castro AJ, de Sousa FF, Mendes Filho J (2017) Temperature induced phase transformations on the Li2MoO4 system studied by Raman spectroscopy. Molecular Structure 1139:119–124CrossRefGoogle Scholar
  16. 16.
    Aleksandrov KS, Blat DH, Zinenko VI, Iskornev IM, Kruglik AI, Plerov I-N (1984) Investigation of ferroelectric phase transitions in CsLiMoO4 type crystals. Ferroelectrics 54:233–236CrossRefGoogle Scholar
  17. 17.
    Araújo VD, Tranquilin RL, Motta FV, Paskocimas CA, Bernardi MIB, Cavalcante LS, Andres J, Longo E, Bomio MRD (2014) Effect of polyvinyl alcohol on the shape, photoluminescence and photocatalytic properties of PbMoO4 microcrystals. Mater Sci Semicond Process 26:425–430CrossRefGoogle Scholar
  18. 18.
    Rosa ILV, Marques APA, Tanaka MTS, Melo DMA, Leite ER, Longo E, Varela JA (2008) Synthesis, characterization and photophysical properties of Eu3+ Doped in BaMoO4. Fluorescence 18:239–245CrossRefGoogle Scholar
  19. 19.
    Voron’ko YK, Subbotin KA, Shukshin VE, Lis DA, Ushakov SN, Popov AV, Zharikov EV (2006) Growth and spectroscopic investigations of Yb3+-doped NaGd (MoO4)2 and NaLa (MoO4)2—new promising laser crystals. Opt Mater 29:246–252CrossRefGoogle Scholar
  20. 20.
    Aleksandroav KS, Anistratovs T, Melnikovap V, Klevtsov V, Kruglik AI, Voronov VN (1981) Ferroelectric phase transitions in CsLiMoO4 single crystals. Phys Status Solidi 67:377–380CrossRefGoogle Scholar
  21. 21.
    Klevtsov PV, Glinskaya LA, Klevtsova RF, Aleksandrov KS (1997) Synthesis and crystal structure analysis of binary molybdate CsNaMoO4 · 2H2O. Struct Chem 38:615–619CrossRefGoogle Scholar
  22. 22.
    Park G, Oh I, Kyeong Yu S, Park H, Kima H (2016) Redetermination of the crystal structure of potassium lithium molybdate monohydrate, KLiMoO4·H2O. Zeitschrift Fur Kristallographie 231:1221–1222Google Scholar
  23. 23.
    Roopan SM, Somalle R, Bioanal A (2016) Review on outlook of coating materials for Li-ion battery. Electrochemical 8:12–28Google Scholar
  24. 24.
    Goel P, Gupta MK, Mittal R, Rols S, Patwe SJ, Achary SN, Tyagi AK, Chaplot SL (2014) Phonons, lithium diffusion and thermodynamics of LiMPO4 (M= Mn, Fe). Materials Chemisry A 2:14729–14738CrossRefGoogle Scholar
  25. 25.
    Klevcova RF, Solov’eva LP, Iscenko VN, Perepelica AP, Klevcov PV (1984) Synthesis of monohydrates of double lithium molybdates and tungstates with rubidium and potassium M+LiEO4xH2O and crystal structure of RbLiMoO4xH2O. Kristallografiya 29:232–237Google Scholar
  26. 26.
    Amouri A, Abdelmoula N, Khemakhem H (2015) Structural, dielectric and vibrational properties of Ba (1- x) Bix [Ti0. 95 (Yb0. 5Nb0. 5) 0.05](1- x) FexO3 ceramics (0= x= 0.2). Ceram Int 41:10425–10433CrossRefGoogle Scholar
  27. 27.
    Bid S, Pradhan SK (2002) Preparation and microstructure characterization of ball-milled ZrO2 powder by the Rietveld method: monoclinic to cubic phase transformation without any additive. Crystallography 35:517–525CrossRefGoogle Scholar
  28. 28.
    Hanuza J, Maczka M (1994) Vibrational properties of the double molybdates MX( MoO4)2 family (M = Li,Na,K,Cs; X = Bi,Cr). Vib Spectrosc 7:85–96CrossRefGoogle Scholar
  29. 29.
    Saraf U, Bajpai PK (2010) Dielectric and spectroscopic studies of some double alkaline molybdates/tungstates compounds. International Academy of Physical Sciences 14:81–90Google Scholar
  30. 30.
    Luz Lima C, Saraiva GD, Freire PTC, Maczka M, Paraguassu W, de Sousae FF, Mendes Filhoa J (2011) Temperature-induced phase transformations in Na2WO4 and Na2MoO4 crystals. Raman Spectroscopy 42:799–802CrossRefGoogle Scholar
  31. 31.
    Saraiva GD, Paraguassu W, Freire PTC, Maczka M, Filho JM (2012) Temperature-dependent Raman scattering study of K2MoO4. Vib Spectrosc 58:87–94CrossRefGoogle Scholar
  32. 32.
    Paraguassa W, Saraiva GD, Guerini S, Freire PTC, Abagaro BTO, Mendes Filho J (2012) Pressureinduced phase transition on K2MoO4: A Raman scattering study and ab initio calculations. Sol State Chem 196:197–202CrossRefGoogle Scholar
  33. 33.
    Miladi L, Oueslati A, Guidara K (2016) Phase transition, conduction mechanism and modulus study of KMgPO4 compound. RSC Adv 6:83280–83287CrossRefGoogle Scholar
  34. 34.
    Bahri F, Khemakhem H, Simon A, Von Der Mühll R (2003) Dielectric and pyroelectric studies on the Ba1- 3aBi2aTiO3 classical and relaxor ferroelectric ceramics. Solid State Sci 5:1235–1238CrossRefGoogle Scholar
  35. 35.
    Uchino K, Nomura S (1982) Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44:55–61CrossRefGoogle Scholar
  36. 36.
    Krimi M, Karoui K, Ben Rhaiem A (2017) Electrical and dielectric properties of the Li 1.5 Na0. 5WO4 compound. Alloyz Compd 698:510–517CrossRefGoogle Scholar
  37. 37.
    Pati B, Sutar BC, Parida BN, Das PR, Choudhary RNP (2013) Dielectric and impedance spectroscopy of barium orthovanadate ceramics. Mater Sci Mater Electron 24:1608–1616CrossRefGoogle Scholar
  38. 38.
    Ben Rhaiem A, Chouaib S, Guidara K (2010) Dielectric relaxation and ionic conductivity studies of Ag2ZnP2O7, J. Ionics 16:455–463CrossRefGoogle Scholar
  39. 39.
    Krimi M, Karoui K, Suñol JJ, Ben Rhaiem A (2018) Phase transition, impedance spectroscopy and conduction mechanism of Li 0.5Na1.5WO4 material. Phhsica E 102:137–145CrossRefGoogle Scholar
  40. 40.
    Chatterjee S, Mahapatra PK, Choudhary RNP, Thakur AK (2004) Complex impedance studies of sodium pyrotungstate - Na {sub 2} W {sub 2} O {sub 7}. Phys Status Solids 201:588–595CrossRefGoogle Scholar
  41. 41.
    Mariappan CR, Govindaraj G, Rathan SV, Prakash GV (2005) Preparation, characterization, ac conductivity and permittivity studies on vitreous M4AlCdP3O12 (M= Li, Na, K) system. Mater Sci Eng B 121:2–8CrossRefGoogle Scholar
  42. 42.
    Hou J, Qu Y, Vaish R, Krsmanovic D, Kumar RV (2011) Effect of Sb Substitution on the Structural and Electrical Properties of Bi4Ti3-2xNbxTaxO12 Ceramics. American Ceramic Society 94:2523–2529CrossRefGoogle Scholar
  43. 43.
    Purohit V, Padhee R, Choudhary RNP (2018) Dielectric and impedance spectroscopy of Bi (Ca0. 5Ti0. 5) O3 ceramic. Ceram Int 44:3993–3999CrossRefGoogle Scholar
  44. 44.
    Sahu T, Behera B (2018) Dielectric and electrical study along with the evidences of small polaron tunnelling in Gd doped bismuth ferrite lead titanate composites. Materials Science: Materials in Electronics 29:7412–7424Google Scholar
  45. 45.
    Sahu T, Behera B (2018) Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites. Phys Chem Solids 113:186–193CrossRefGoogle Scholar
  46. 46.
    Jaschin PW, Varma KBR (2017) Lithium ion conductivity and dielectric relaxation in dendritic nanostructured LiTaO3 glass–nanocrystal composites. Appl Phys 121:094101CrossRefGoogle Scholar
  47. 47.
    Rayssi C, El. Kossi S, Dhahri J, Khirouni K (2018) Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-xCo4x/3O3 (0 = x = 0.1). RSC Adv 8:17139–17150CrossRefGoogle Scholar
  48. 48.
    Mariappan CR, Govindaraj G, Ramya L, Hariharan S (2005) Synthesis, characterization and electrical conductivity studies on A3Bi2P3O12 (A= Na, K) materials. Mater Res Bull 40:610–618CrossRefGoogle Scholar
  49. 49.
    Eliott SR (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135CrossRefGoogle Scholar
  50. 50.
    Ben Mohamed C, Karoui K, Tabellout M, Ben Rhaiem A (2016) Electrical, dielectric and optical properties of [C2H5NH3] 2ZnCl4 compound. Alloys Compd 688:407–415CrossRefGoogle Scholar
  51. 51.
    Ben Nasr W, Kchaou H, Ben Rhaiem A (2018) Phase transition and Conduction mechanism study by overlapping largepolaron tunnelling model in Li2MoO4 ceramic compound. Phys E 102:110–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Spectroscopic and Optical Characterization of Materials, Faculty of SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations