pp 1–10 | Cite as

Long-cycle stability for Li-S batteries by carbon nanofibers/reduced graphene oxide as host cathode material

  • Zhaoyang Li
  • Youlan ZouEmail author
  • Jinliang Duan
  • Bo Long
  • Yanyan Du
Original Paper


3D network structure of carbon nanofibers (CNF) chemically cross-linked with reduced graphene oxide (RGO) sheet was successfully prepared by electrospinning a dispersion of polyacrylonitrile (PAN) and graphene oxide (GO) sheets in dimethylformamide followed by heat treatment. Cathodes made with such composites after infused with sulfur (CNF-RGO/S) were able to deliver an initial reversible capacity of 730 mAh/g and 378 mAh/g after 500 cycles at 0.1 C. Even at a high rate of 5 C, the CNF-RGO/S experienced the capacity of 227 mAh/g and no capacity fade after 400 cycles. In contrast, the capacity of an electrode without adding RGO decayed dramatically. The CNF matrix provides stable mechanical stability and shortens diffusion paths. The addition of RGO sheets increase the contact area with the electrolyte and speed up the reaction rate. These results demonstrate that the 3D network structure is of great potential as the cathode for long-cycle and high-rate rechargeable Li-S batteries.


Carbon nanofiber Graphene Electrospinning Li-S batteries 


Funding information

This work was supported by Nature Science Foundation of China (NO: 11702234, 11602213), and the Nature Science Foundation of Hunan province (NO: 2018JJ3488, 2017JJ3301).


  1. 1.
    Bruce PG, Freunberger SA, Hardwick LJ et al (2012) Li–O2 and Li–S batteries with high energy storage[J]. Nat Mater 11(1):19CrossRefGoogle Scholar
  2. 2.
    Yu X, Joseph J, Manthiram A (2016) Suppression of the polysulfide-shuttle behavior in Li–S batteries through the development of a facile functional group on the polypropylene separator[J]. Mater Horiz 3(4):314–319CrossRefGoogle Scholar
  3. 3.
    Fang R, Zhao S, Hou P et al (2016) 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries[J]. Adv Mater 28(17):3374–3382CrossRefGoogle Scholar
  4. 4.
    Liu X, Zhang Q, Huang J et al (2013) Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries[J]. J Energy Chem 22(2):341–346CrossRefGoogle Scholar
  5. 5.
    Yin YX, Xin S, Guo YG et al (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects[J]. Angew Chem Int Ed 52(50):13186–13200CrossRefGoogle Scholar
  6. 6.
    Hu H, Cheng H, Liu Z et al (2015) In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries[J]. Nano Lett 15(8):5116–5123CrossRefGoogle Scholar
  7. 7.
    Zhou G, Li L, Ma C et al (2015) A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy 11:356–365CrossRefGoogle Scholar
  8. 8.
    Kim JW, Ocon JD, Park DW et al (2013) Enhanced reversible capacity of Li-S battery cathode based on graphene oxide[J]. J Energy Chem 22(2):336–340CrossRefGoogle Scholar
  9. 9.
    Xu JJ, Wang ZL, Xu D et al (2014) 3D ordered macroporous LaFeO 3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance[J]. Energy Environ Sci 7(7):2213–2219CrossRefGoogle Scholar
  10. 10.
    Yuan L, Yuan H, Qiu X et al (2009) Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. J Power Sources 189(2):1141–1146CrossRefGoogle Scholar
  11. 11.
    Wang G, Lai Y, Zhang Z et al (2015) Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@ PEG-modified separator[J]. J Mater Chem A 3(13):7139–7144CrossRefGoogle Scholar
  12. 12.
    Wang W, Li G, Wang Q et al (2013) Sulfur-polypyrrole/graphene multi-composites as cathode for lithium-sulfur battery[J]. J Electrochem Soc 160(6):A805–A810CrossRefGoogle Scholar
  13. 13.
    Zu C, Fu Y, Manthiram A (2013) Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes[J]. J Mater Chem A 1(35):10362–10367CrossRefGoogle Scholar
  14. 14.
    Chen A, Liu W, Hu H et al (2018) Facile preparation of ultrafine Ti4O7 nanoparticle-embedded porous carbon for high areal capacity lithium–sulfur batteries[J]. J Mater Chem A 6(41):20083–20092CrossRefGoogle Scholar
  15. 15.
    Zhang J, Hu H, Li Z et al (2016) Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium–sulfur batteries[J]. Angew Chem Int Ed 55(12):3982–3986CrossRefGoogle Scholar
  16. 16.
    Zhang J, Li Z, Chen Y et al (2018) Nickel–iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium–sulfur batteries[J]. Angew Chem Int Ed 57(34):10944–10948CrossRefGoogle Scholar
  17. 17.
    Zhu P, Zhu J, Zang J et al (2017) A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries[J]. J Mater Chem A 5(29):15096–15104CrossRefGoogle Scholar
  18. 18.
    Wutthiprom J, Phattharasupakun N, Sawangphruk M (2018) Designing an interlayer of reduced graphene oxide aerogel and nitrogen-rich graphitic carbon nitride by a layer-by-layer coating for high-performance lithium sulfur batteries[J]. Carbon 139:945–953CrossRefGoogle Scholar
  19. 19.
    Zhou G (2017) Graphene–pure sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[M]//design fabrication and electrochemical performance of nanostructured carbon based materials for high-energy lithium–sulfur batteries. Springer, Singapore, pp 75–94Google Scholar
  20. 20.
    Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries[J]. Angew Chem 127(44):13078–13082CrossRefGoogle Scholar
  21. 21.
    Li Z, Zhang JT, Chen YM et al (2015) Pie-like electrode design for high-energy density lithium–sulfur batteries[J]. Nat Commun 6:8850CrossRefGoogle Scholar
  22. 22.
    Tang C, Zhang Q, Zhao MQ et al (2014) Nitrogen-Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for High-Rate Lithium-Sulfur Batteries[J]. Adv Mater 26(35):6100–6105CrossRefGoogle Scholar
  23. 23.
    Sun H, You X, Deng J, Chen X, Yang Z, Ren J, Peng H (2014) Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater 26:2868–2873CrossRefGoogle Scholar
  24. 24.
    Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050CrossRefGoogle Scholar
  25. 25.
    Li W, Li M, Wang M et al (2015) Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries[J]. Nano Energy 13:693–701CrossRefGoogle Scholar
  26. 26.
    Li W, Yang Z, Jiang Y et al (2014) Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries[J]. Carbon 78:455–462CrossRefGoogle Scholar
  27. 27.
    Xu N, Qian T, Liu X et al (2016) Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates[J]. Nano Lett 17(1):538–543CrossRefGoogle Scholar
  28. 28.
    Rao J, Xu R, Zhou T, Zhang D, Zhang C (2017) Rational design of self-supporting graphene—Polypyrrole/sulfur—Graphene sandwich as structural paper electrode for lithium sulfur batteries. J Alloys Compd 728:376–382CrossRefGoogle Scholar
  29. 29.
    Song J, Wang X, Chang CT (2014) Preparation and characterization of graphene oxide[J]. J Nanomater 2014:1–6Google Scholar
  30. 30.
    Gao W (2015) The chemistry of graphene oxide[M]//graphene oxide. Springer, Cham, pp 61–95CrossRefGoogle Scholar
  31. 31.
    Liang X, Hart C, Pang Q et al (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries[J]. Nat Commun 6:5682CrossRefGoogle Scholar
  32. 32.
    Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach[J]. Int J Renew Energy Environ Eng 2(01):58–63Google Scholar
  33. 33.
    Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide[J]. ACS Nano 4(8):4806–4814CrossRefGoogle Scholar
  34. 34.
    Dufficy MK, Khan SA, Fedkiw PS (2016) Hierarchical graphene-containing carbon nanofibers for lithium-ion battery anodes[J]. ACS Appl Mater Interfaces 8(2):1327–1336CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Sun K, Liang Z, Wang Y, Ling L (2018) N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl Surf Sci 427:823–829CrossRefGoogle Scholar
  36. 36.
    Zhuang X, Liu Y, Chen J et al (2014) Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode[J]. J Energy Chem 23(3):391–396CrossRefGoogle Scholar
  37. 37.
    Zheng S, Wen Y, Zhu Y et al (2014) In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes[J]. Adv Energy Mater 4(16):1400482CrossRefGoogle Scholar
  38. 38.
    Leng X, Wu KH, Gentle IR et al (2015) Electroactive cellulose-supported graphene oxide interlayers for Li–S batteries[J]. Carbon 93:611–619CrossRefGoogle Scholar
  39. 39.
    Huang JQ, Xu ZL, Abouali S et al (2016) Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries[J]. Carbon 99:624–632CrossRefGoogle Scholar
  40. 40.
    Rao J, Xu R, Zhou T et al (2017) Rational design of self-supporting graphene-polypyrrole/sulfur-graphene sandwich as structural paper electrode for lithium sulfur batteries[J]. J Alloys Compd 728:376–382CrossRefGoogle Scholar
  41. 41.
    Zhang L, Wang Y, Peng B et al (2014) Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries[J]. Green Chem 16(8):3926–3934CrossRefGoogle Scholar
  42. 42.
    Nie M, Chalasani D, Abraham DP et al (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. J Phys Chem C 117(3):1257–1267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhaoyang Li
    • 1
    • 2
  • Youlan Zou
    • 1
    • 2
    Email author
  • Jinliang Duan
    • 1
    • 2
  • Bo Long
    • 1
    • 2
  • Yanyan Du
    • 1
    • 2
  1. 1.National-Provincial Laboratory of Special Function Thin Film MaterialsXiangtan UniversityXiangtanChina
  2. 2.School of Materials Science and EngineeringXiangtan UniversityXiangtanChina

Personalised recommendations