Skip to main content
Log in

Enhanced performance of a single-chamber solid oxide fuel cell with dual gas supply method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Single-chamber solid oxide fuel cell made of conventional materials with two gas tubes located at the different sides of the cell was fabricated and tested in a diluted methane-oxygen mixture to evaluate the influence of various operating parameters on cell performance. The traditional gas supply method was also studied for comparison. Experimental results showed that the cell performance was greatly enhanced by using the dual gas supply method. At a furnace temperature of 700 °C, the maximum power density was 459.2 mW cm−2 for a CH4/O2 ratio of 1.5, which was 67% higher than that of the traditional gas supply method. Additionally, the dual gas supply method could provide the required reactant gas for each electrode by changing the gas composition of both the gas tubes separately. The highest power density of 493.9 mW cm−2 was obtained at the anode and cathode CH4/O2 ratios of 1.5 and 1, respectively. A cell with dual gas supply method will generate a more attractive power output than that of the traditional method in a single-chamber condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun CW, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Power Sources 171:247–260

    Article  CAS  Google Scholar 

  2. Chen KF, Tian YT, Lü Z, Ai N, Huang XQ, Su WH (2009) Behavior of 3 Mol% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating. J Power Sources 186:128–132

    Article  CAS  Google Scholar 

  3. Sun CW, Xie Z, Xia CR, Li H, Chen LQ (2006) Investigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochem Commun 8:833–838

    Article  CAS  Google Scholar 

  4. Yang W, Zhu CL, Ma ZH, Sun CW, Chen LQ, Chen YJ (2014) MoO3 nanorods/Fe2(MoO4)3 nanoparticles composite anode for solid oxide fuel cells. Int J Hydrog Energy 39:14411–14415

    Article  CAS  Google Scholar 

  5. Yang Q, Chai FT, Ma C, Sun CW, Shi SQ, Chen LQ (2016) Enhanced coking tolerance of MgO-promoted Ni cermet anode for hydrocarbon fueled solid oxide fuel cells. J Mater Chem A 4:18031–18036

    Article  CAS  Google Scholar 

  6. Yang Q, Chen J, Sun CW, Chen LQ (2016) Direct operation of methane fueled solid oxide fuel cells with Ni cermet anode via Sn modification. Int J Hydrog Energy 41:11391–11398

    Article  CAS  Google Scholar 

  7. Kuhn M, Napporn TW (2010) Single-chamber solid oxide fuel cell technology - from its origins to Today’s state of the art. Energies 3:57–134

    Article  CAS  Google Scholar 

  8. Wei B, Lu Z, Huang XQ, Liu ML, Chen KF, Su WH (2007) Enhanced performance of a single-chamber solid oxide fuel cell with an SDC-impregnated cathode. J Power Sources 167:58–63

    Article  CAS  Google Scholar 

  9. Buergler BE, Siegrist ME, Gauckler LJ (2005) Single chamber solid oxide fuel cells with integrated current-collectors. Solid State Ionics 176:1717–1722

    Article  CAS  Google Scholar 

  10. Yano M, Tomita A, Sano M, Hibino T (2007) Recent advances in single-chamber solid oxide fuel cells: a review. Solid State Ionics 177:3351–3359

    Article  CAS  Google Scholar 

  11. Riess I (2008) On the single chamber solid oxide fuel cells. J Power Sources 175:325–337

    Article  CAS  Google Scholar 

  12. Yano M, Nagao M, Okamoto K, Tomita A, Uchiyama Y, Uchiyama N, Hibino T (2008) A single-chamber SOFC stack operating in engine exhaust. Electrochem Solid-State Lett 11:B29–B33

    Article  CAS  Google Scholar 

  13. Shao ZP, Mederos J, Chueh WC, Haile SM (2006) High power-density single-chamber fuel cells operated on methane. J Power Sources 162:589–596

    Article  CAS  Google Scholar 

  14. Hibino T, Hashimoto A, Inoue T, Tokuno JI, Yoshida SI, Sano M (2000) Single-chamber solid oxide fuel cells at intermediate temperatures with various hydrocarbon-air mixtures. J Electrochem Soc 147:2888–2892

    Article  CAS  Google Scholar 

  15. Tomita A, Hirabayashi D, Hibino T, Nagao M, Sano M (2005) Single-chamber SOFCs with a Ce0.9Gd0.1O1.95 electrolyte film for low-temperature operation. Electrochem Solid-State Lett 8-1:A63–A65

    Article  CAS  Google Scholar 

  16. Yano M, Kawai T, Okamoto K, Nagao M, Sano M, Tomita A, Hibino T (2007) Single-chamber SOFCs using dimethyl ether and ethanol. J Electrochem Soc 154:B865–B870

    Article  CAS  Google Scholar 

  17. Napporn TW, Jacques-Bédard X, Morin F, Meunier M (2004) Operating conditions of a single-chamber SOFC. J Electrochem Soc 151:A2088–A2094

    Article  CAS  Google Scholar 

  18. Shao ZP, Kwak C, Haile SM (2004) Anode-supported thin-film fuel cells operated in a single chamber configuration 2T-I-12. Solid State Ionics 175:39–46

    Article  CAS  Google Scholar 

  19. Suzuki T, Jasinski P, Petrovsky V, Anderson HU, Dogan F (2004) Anode supported single chamber solid oxide fuel cell in CH4-air mixture. J Electrochem Soc 151:A1473–A1476

    Article  CAS  Google Scholar 

  20. Suzuki T, Jasinski P, Petrovsky V, Anderson HU, Dogan F (2005) Performance of a porous electrolyte in single-chamber SOFCs. J Electrochem Soc 152:A527–A531

    Article  CAS  Google Scholar 

  21. Napporn TW, Morin F, Meunier M (2004) Evaluation of the actual working temperature of a single-chamber SOFC. Electrochem Solid-State Lett 7:A60–A62

    Article  CAS  Google Scholar 

  22. Shao ZP, Haile SM, Ahn J, Ronney PD, Zhan ZL, Barnett SA (2005) A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435:795–798

    Article  CAS  PubMed  Google Scholar 

  23. Hibino T, Hashimoto A, Inoue T, Tokuno JI, Yoshida SI, Sano M (2001) A solid oxide fuel cell using an exothermic reaction as the heat source. J Electrochem Soc 148:A544–A549

    Article  CAS  Google Scholar 

  24. Hibino T, Hashimoto A, Yano M, Suzuki M, Yoshida S, Sanob M (2002) High performance anodes for SOFCs operating in methane-air mixture at reduced temperatures. J Electrochem Soc 149:A133–A136

    Article  CAS  Google Scholar 

  25. Zhang CM, Sun LL, Ran R, Shao ZP (2009) Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process. Electrochem Commun 11:1563–1566

    Article  CAS  Google Scholar 

  26. Bay L, Horita T, Sakai N, Ishikawa M, Yamaji K, Yokokawa H (1998) Hydrogen solubility in Pr-doped and un-doped YSZ for a one chamber fuel cell. Solid State Ionics 113-115:363–367

    Article  CAS  Google Scholar 

  27. Stefan IC, Jacobson CP, Visco SJ, De Jonghe LC (2004) Single chamber fuel cells: flow geometry, rate, and composition considerations. Electrochem Solid-State Lett 7:A198–A200

    Article  CAS  Google Scholar 

  28. Morel B, Roberge R, Savoie S, Napporn TW, Meunier M (2009) Temperature and performance variations along single chamber solid oxide fuel cells. J Power Sources 186:89–95

    Article  CAS  Google Scholar 

  29. Jacques-Bédard X, Napporn TW, Roberge R, Meunier M (2007) Coplanar electrodes Design for a Single-Chamber SOFC assessment of the operating parameters. J Electrochem Soc 154:B305–B309

    Article  CAS  Google Scholar 

  30. Tian YT, Lü Z, Liu ML, Zhu XB, Wei B, Zhang YH, Huang XQ, Su WH (2013) Effect of gas supply method on the performance of the single-chamber SOFC micro-stack and the single cells. J Solid State Electrochem 17:269–275

    Article  CAS  Google Scholar 

  31. Wei B, Lü Z, Huang XQ, Liu ML, Jia DC, Su WH (2009) A novel design of single-chamber SOFC micro-stack operated in methane-oxygen mixture. Electrochem Commun 11:347–350

    Article  CAS  Google Scholar 

  32. Liu ML, Lü Z, Wei B, Huang XQ, Chen KF, Su WH (2009) A novel cell-Array Design for Single Chamber SOFC microstack. Fuel Cells 9(5):717–721

    Article  CAS  Google Scholar 

  33. Liu ML, Qi X, Lv Z, Meng QY (2013) Effect of flow geometry on anode-supported single chamber SOFCs arrayed as V-shape. Int J Hydrog Energy 38:1976–1982

    Article  CAS  Google Scholar 

  34. Hao Y, Goodwin DG (2008) Efficiency and fuel utilization of methane-powered single-chamber solid oxide fuel cells. J Power Sources 183:157–163

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 51602213, 11604236, and 61575139) and the Youth Foundation of the Taiyuan University of Technology (No. 2015QN071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanting Tian or Zhe Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Lü, Z., Wang, Z. et al. Enhanced performance of a single-chamber solid oxide fuel cell with dual gas supply method. Ionics 25, 1281–1289 (2019). https://doi.org/10.1007/s11581-019-02893-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02893-x

Keywords

Navigation