pp 1–10 | Cite as

CuFe2O4 magnetic nanoparticles to improve the ionic transfer properties of electrodialysis heterogeneous cation exchange membrane

  • S. M. HosseiniEmail author
  • M. Aliabadi Farahani
  • H. Khalili
  • B. Van der Bruggen
  • M. Nemati
  • Z. Rajabi
  • A. Ahmadi
Original Paper


Mixed matrix polyvinyl chloride-copper ferrite nanoparticles cation exchange membranes were prepared by casting solution technique. The effect of CuFe2O4 nanoparticles concentration on electrochemical properties of prepared membranes was investigated. The CuFe2O4 nanoparticles were synthesized by chemical precipitation technique. The formation of copper ferrite nanoparticles was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Scanning microscopy images showed uniform distribution of particles in the membrane matrix. Membrane surface hydrophilicity and charge density, membranes potential, transport number (> 97%) and permselectivity (> 96%) were enhanced by using CuFe2O4 nanoparticles in the membrane body. Also, ion exchange capacity and cation flux were increased initially by utilizing CuFe2O4 nanoparticles up to 1 wt% in the casting solution and then followed by a decreasing trend by adding more concentration up to 8 wt%. The PVC-CuFe2O4 membranes displayed lower electrical resistance (< 4 Ω.Cm2) compared to unmodified ones.


CuFe2O4 nanoparticles Heterogeneous membrane Electrochemical property Electrodialysis 


Funding information

This research is financially supported by Arak University.


  1. 1.
    Zarrinkhameh M, Zendehnam A, Hosseini SM (2014) Preparation and characterization of nanocomposite heterogeneous cation exchange membranes modified by silver nanoparticles. Korean J Chem Eng 31:1187–1193CrossRefGoogle Scholar
  2. 2.
    Hosseini SM, Gholami A, Koranian P, Nemati M, Madaeni SS, Moghadassi AR (2014) Electrochemical characterization of mixed matrix heterogeneous cation exchange membrane modified by aluminium oxide nanoparticles: mono/bivalent ionic transportation. J Taiwan Inst Chem Eng 45:1241–1248CrossRefGoogle Scholar
  3. 3.
    Hosseini SM, Madaeni SS, Heidari AR, Amirimehr A (2012) Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron-nickel oxide nanoparticles. Desalination 284:191–199CrossRefGoogle Scholar
  4. 4.
    Hosseini SM, Jashni E, Jafari MR, Van der Bruggen B, Shahedi Z (2018) Nanocomposite polyvinyl chloride-based heterogeneous cation exchange membrane prepared by synthesized ZnQ2 nanoparticles: ionic behaviour and morphological characterization. J Membr Sci 560:1–10CrossRefGoogle Scholar
  5. 5.
    Nemati M, Hosseini SM (2017) Adapting the ionic transfer behavior of cation exchange membrane incorporated with SiO2/PAA composite nanoparticles. Ionics 23:3555–3564CrossRefGoogle Scholar
  6. 6.
    Nemati M, Hosseini SM, Shabanian M (2017) Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J Hazard Mater 337:90–104CrossRefGoogle Scholar
  7. 7.
    Xu T (2005) Ion exchange membrane: state of their development and perspective. J Membr Sci 263:1–29CrossRefGoogle Scholar
  8. 8.
    Hosseini SM, Jashni E, Habibi M, Nemati M, Van der Bruggen B (2017) Evaluating the ion transport characteristics of novel graphene oxide nanoplates entrapped mixed matrix cation exchange membranes in water deionization. J Membr Sci 541:641–652CrossRefGoogle Scholar
  9. 9.
    Hosseini SM, Jashni E, Habibi M, Van der Bruggen B (2018) Fabrication of novel electrodialysis heterogeneous ion exchange membranes by incorporating PANI/GO functionalized composite nanoplates. Ionics 24:1789–1801CrossRefGoogle Scholar
  10. 10.
    Fang X, Li J, Li X, Pan S, Sun X, Shen J, Han W, Wang L, Van der Bruggen B (2017) Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance. J Colloid Interface Sci 505:642–652CrossRefGoogle Scholar
  11. 11.
    Heydari F, Nemati Kharat A, Khodabakhshi AR (2016) Preparation, characterization and transport properties of novel cation-exchange nanocomposite membrane containing BaFe12O19 nanoparticles. J Clust Sci 27:193–211CrossRefGoogle Scholar
  12. 12.
    Nemati M, Hosseini SM (2016) Fabrication and electrochemical property modification of mixed matrix heterogeneous cation exchange membranes filled with Fe3O4/PAA core-shell nanoparticles. Ionics 22:899–909CrossRefGoogle Scholar
  13. 13.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:829–858CrossRefGoogle Scholar
  14. 14.
    Gupta VK, Chandra R, Tyagi I, Verma M (2016) Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J Colloid Interface Sci 478:54–62CrossRefGoogle Scholar
  15. 15.
    Chauhan S, Ojha C, Shrivastava AK (2009) Synthesis and characterization of CuFe2O4 nanoparticles. Int J Theor Appl Sci 1:9–11Google Scholar
  16. 16.
    Fedialaine M, Berkani S, Trati M (2016) Ni+ reduction under solar irradiation over CuFe2O4/TiO2 catalysts. Korean J Chem Eng 33:2027–2033CrossRefGoogle Scholar
  17. 17.
    Nabiyouni G, Ahmadi A, Ghanbari D, Halakouie H (2016) SrFe12O19 ferrites and hard magnetic PVA nanocomposite: investigation of magnetization, coecivity and remanence. J Mater Sci Mater Electron 27:4297–4306CrossRefGoogle Scholar
  18. 18.
    Tanaka Y (2007) Ion exchange membranes: fundamentals and applications, membrane science and technology series, 12. Elsevier, NetherlandsGoogle Scholar
  19. 19.
    Nagarale R, Shahi VK, Schubert R, Rangarajan R, Mehnert R (2004) Development of urethane acrylate composite ion-exchange membranes and their electrochemical characterization. J Colloid Interface Sci 270:446–454CrossRefGoogle Scholar
  20. 20.
    Hosseini SM, Jashni E, Amani S, Van der Bruggen B (2017) Tailoring the electrochemical properties of ED ion exchange membranes based on the synergism of TiO2 nanoparticles-co-GO nanoplates. J Colloid Interface Sci 505:763–775CrossRefGoogle Scholar
  21. 21.
    Nagarale R, Shahi VK, Rangarajan R (2005) Preparation of polyvinyl alcohol–silica hybrid heterogeneous anion-exchange membranes by sol-gel method and their characterization. J Membr Sci 248:37–44CrossRefGoogle Scholar
  22. 22.
    Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Shahi VK, Trivedi GS, Thampy SK, Rangarajan R (2003) Studies on the electrochemical and permeation characteristic of asymmetric charged porous membranes. J Colloid Interface Sci 262:566–573CrossRefGoogle Scholar
  24. 24.
    Hosseini SM, Hamidi AR, Moghadassi AR, Koranian P, Madaeni SS (2015) Fabrication of novel mixed matrix electrodialysis heterogeneous ion exchange membranes modified by ilmenite (FeTiO3): electrochemical and ionic transport characteristics. Ionics 21:437–447CrossRefGoogle Scholar
  25. 25.
    Sata T (2004) Ion exchange membranes: preparation, characterization, modification and application. The Royal Society of Chemistry, CambridgeGoogle Scholar
  26. 26.
    Eckertova L (1986) Physics of thin films, 2nd edn. Plenum Press, New YorkGoogle Scholar
  27. 27.
    Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci 39:1–42CrossRefGoogle Scholar
  28. 28.
    Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130CrossRefGoogle Scholar
  29. 29.
    Dlugolecki P, Nymeijer K, Metz S, Wessling M (2008) Current status of ion exchange membranes for power generation from salinity gradients. J Membr Sci 319:214–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. M. Hosseini
    • 1
    Email author
  • M. Aliabadi Farahani
    • 1
  • H. Khalili
    • 2
  • B. Van der Bruggen
    • 3
    • 4
  • M. Nemati
    • 1
  • Z. Rajabi
    • 1
  • A. Ahmadi
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringArak UniversityArakIran
  2. 2.Department of Physics, Faculty of SciencesArak UniversityArakIran
  3. 3.Process Engineering for Sustainable Systems Section, Department of Chemical EngineeringUniversity of LeuvenLeuvenBelgium
  4. 4.Faculty of Engineering and the Built EnvironmentTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations