Abstract
A new composite solid polymer electrolyte (SPE) PPC-PEO 10 W [5:5]-1%wt LAGP with high conductivity is successfully prepared. The relationships between the conductivities and compositions are systematically characterized. The optimal composite polymer electrolyte presents a maximum conductivity of 8.39 × 10−4 S cm−1 with a 4.5 V electrochemical window and excellent stability with lithium at 60 °C. The relevant mechanisms of the conductivity improvement are studied. Finally, the all-solid-state lithium battery (ASSLB) LiFePO4/Li cells are assembled and the initial discharge specific capacities of the cells are 152.9, 135.1, 114.9, and 99.1 mAh g−1 at 0.1, 0.2, 0.5, and 1 C at 60 °C, respectively. The LFP/Li cells show good discharge retentions of 88.2% (~ 103.1 mAh g−1) after 700 cycles at 0.5 C and 73.4% after 500 cycles at 1 C. This work presents a promising composite polymer electrolyte for ASSLBs, which is a highly attractive candidate for practical application.
This is a preview of subscription content, access via your institution.








References
Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources 195:4554–4569. https://doi.org/10.1016/j.jpowsour.2010.01.076
Chen RJ, Qu WJ, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3:487–516. https://doi.org/10.1039/c6mh00218h
Zheng B, Wang H, Ma J, Gong Z, Yang Y (2017) A review of inorganic solid electrolyte/electrode interface in all-solid-state lithium batteries. Sci Sin Chim 47:579–593. https://doi.org/10.1360/n032016-00239
Hayashi A, Sakuda A, Tatsumisago M (2016) Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries. Front Energy Res 4:1–13. https://doi.org/10.3389/fenrg.2016.00025
Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182:116–119. https://doi.org/10.1016/j.ssi.2010.10.013
Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540. https://doi.org/10.1039/c0cs00081g
Xu D, Wang B, Wang Q, Gu S, Li W, Jin J, Chen C, Wen Z (2018) High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS Appl Mater Interfaces 10:17809–17819. https://doi.org/10.1021/acsami.8b00034
Chen B, Huang Z, Chen XT, Zhao YR, Xu Q, Long P, Chen SJ, Xu XX (2016) A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochim Acta 210:905–914. https://doi.org/10.1016/j.electacta.2016.06.025
Yang L, Wang Z, Feng Y, Tan R, Zuo Y, Gao R, Zhao Y, Han L, Wang Z, Pan F (2017) Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv Energy Mater 7:1701437–1701446. https://doi.org/10.1002/aenm.201701437
Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104:267–276. https://doi.org/10.1016/s0167-2738(97)00422-0
Wei Z, Chen S, Wang J, Wang Z, Zhang Z, Yao X, Deng Y, Xu X (2018) A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. J Power Sources 394:57–66. https://doi.org/10.1016/j.jpowsour.2018.05.044
Wei Z, Chen S, Wang J, Wang Z, Zhang Z, Yao X, Deng Y, Xu X (2018) Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. J Mater Chem A 6:13438–13447. https://doi.org/10.1039/c8ta04477e
Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28. https://doi.org/10.1016/j.ssi.2014.08.002
Wetjen M, Navarra MA, Panero S, Passerini S, Scrosati B, Hassoun J (2013) Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries. Chemsuschem 6:1037–1043. https://doi.org/10.1002/cssc.201300105
Masoud EM, El-Bellihi AA, Bayoumy WA, Mousa MA (2013) Organic-inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries: dielectric and transport properties. J Alloys Compd 575:223–228. https://doi.org/10.1016/j.jallcom.2013.04.054
Zhao YR, Huang Z, Chen SJ, Chen B, Yang J, Zhang Q, Ding F, Chen YH, Xu XX (2016) A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 295:65–71. https://doi.org/10.1016/j.ssi.2016.07.013
Huang LZ, Wen Z-Y, Jin J, Liu Y (2012) Preparation and characterization of PEO-LATP/LAGP ceramic composite electrolyte membrane for lithium batteries. J Inorg Mater 27:249–252. https://doi.org/10.3724/sp.j.1077.2012.00249
Li W, Zhang S, Wang B, Gu S, Xu D, Wang J, Chen C, Wen Z (2018) Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries. ACS Appl Mater Interfaces 10:23874–23882. https://doi.org/10.1021/acsami.8b06574
Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed 55:12538–12542. https://doi.org/10.1002/anie.201607539
Xu X, Wen Z, Wu X, Yang X, Gu Z (2007) Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with good electrical and electrochemical properties. J Am Ceram Soc 90:2802–2806. https://doi.org/10.1111/j.1551-2916.2007.01827.x
Yang J, Huang Z, Huang B, Zhou J, Xu X (2015) Influence of phosphorus sources on lithium ion conducting performance in the system of Li2O–Al2O3–GeO2–P2O5 glass–ceramics. Solid State Ionics 270:61–65. https://doi.org/10.1016/j.ssi.2014.12.013
Zhou D, Zhou R, Chen C, Yee WA, Kong J, Ding G, Lu X (2013) Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J Phys Chem B 117:7783–7789. https://doi.org/10.1021/jp4021678
Yu XY, Xiao M, Wang SJ, Zhao QQ, Meng YZ (2010) Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery. J Appl Polym Sci 115:2718–2722. https://doi.org/10.1002/app.29915
Yue H, Li J, Wang Q, Li C, Zhang J, Li Q, Li X, Zhang H, Yang S (2017) Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain Chem Eng 6:268–274. https://doi.org/10.1021/acssuschemeng.7b02401
Chen B, Xu Q, Huang Z, Zhao YR, Chen SJ, Xu XX (2016) One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J Power Sources 331:322–331. https://doi.org/10.1016/j.jpowsour.2016.09.063
Lee H, Choi S, Choi S, Kim HJ, Choi Y, Yoon S, Cho JJ (2007) SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries. Electrochem Commun 9:801–806. https://doi.org/10.1016/j.elecom.2006.11.008
Chai J, Zhang J, Hu P, Ma J, Du H, Yue L, Zhao J, Wen H, Liu Z, Cui G, Chen L (2016) A high-voltage poly(methylethyl α-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. J Mater Chem A 4:5191–5197. https://doi.org/10.1039/c6ta00828c
Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159:111–119. https://doi.org/10.1016/S0167-2738(03)00025-0
Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461. https://doi.org/10.1016/S0013-4686(01)00458-3
Zhang YJ, Liu XY, Bai WQ, Tang H, Shi SJ, Wang XL, Gu CD, Tu JP (2014) Magnetron sputtering amorphous carbon coatings on metallic lithium: towards promising anodes for lithium secondary batteries. J Power Sources 266:43–50. https://doi.org/10.1016/j.jpowsour.2014.04.147
Park MS, Ma SB, Lee DJ, Im D, Doo SG, Yamamoto O (2014) A highly reversible lithium metal anode. Sci Rep 4:3815. https://doi.org/10.1038/srep03815
Funding
The work was supported by funding from the National Key R&D Program of China (Grant No. 2016YFB0100105), the Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDA09010201), the National Natural Science Foundation of China (Grant No. 51502317), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ16E020003, LY18E020018, LY18E030011, LD18E020004), and Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2017342).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 406 kb)
Rights and permissions
About this article
Cite this article
Wang, Z., Gu, H., Wei, Z. et al. Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery. Ionics 25, 907–916 (2019). https://doi.org/10.1007/s11581-019-02852-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11581-019-02852-6