Skip to main content
Log in

Chromium segregation in Cr-doped TiO2 (rutile): impact of oxygen activity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This work considers the effect of chromium surface segregation for polycrystalline Cr-doped TiO2 on surface vs. bulk defect disorder. It is shown that annealing of Cr-doped TiO2 (0.04 at% Cr) in the gas phase of variable oxygen activity at 1273 K results in a gradual transition in the valence of chromium at the surface from predominantly Cr3+ species in reduced conditions, p(O2) = 10−12 Pa, to comparable concentrations of both Cr3+ and Cr6+ species in oxidising conditions, p(O2) = 105 Pa. The reported data is considered in terms of defect equilibria leading to the formation of positively and negatively charged chromium in both the cation sub-lattice and interstitial sites. The derived theoretical models represent the effect of oxygen activity on the surface charge and the resulting electric field leading to migration mechanism of charged chromium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  2. Schneider J, Bahnemann D, Ye J, Puma GL, Dionysiou DD (2016) Photocatalysis: fundamentals and perspectives. RSC Energy and Environment Series No 14, The Royal Society of Chemistry, Cambridge, UK

  3. Pichat P (2016) Photocatalysis: fundamentals, materials and potential. MDPI AG, Basel, Switzerland. https://doi.org/10.3390/books978-3-03842-184-9

  4. Colmenares JC, Xu Y-J (2016) Heterogeneous photocatalysis: from fundamentals to green applications. Green Chemistry and Sustainable Technology Series, Springer-Verlag, Berlin/Heidelberg, Germany

  5. Atanacio AJ, Ikuma Y (2016) Surface segregation of niobium and tantalum in titanium dioxide. Overview. J Am Ceram Soc 99:1512–1519

    Article  CAS  Google Scholar 

  6. Atanacio A, Nowotny J, Prince KE (2012) Effect of oxygen activity on surface composition of in-doped TiO2 at elevated temperatures. J Phys Chem C 116:19246–19251

    Article  CAS  Google Scholar 

  7. Atanacio AJ, Alim MA, Bak T et al (2016) Segregation in titanium dioxide co-doped with indium and niobium. J Am Ceram Soc 99:1–8

    Article  CAS  Google Scholar 

  8. Atanacio AJ, Bak T, Nowotny J (2014) Niobium segregation in niobium-doped titanium dioxide (rutile). J Phys Chem C 118:11174–11185

    Article  CAS  Google Scholar 

  9. Atanacio AJ, Bak T, Nowotny J (2012) Effect of indium segregation on the surface versus bulk chemistry for indium-doped TiO2. ACS Appl Mater Inter 4:6626–6634

    Article  CAS  Google Scholar 

  10. Johnson W (1977) Grain boundary segregation in ceramics. Metall Mater Trans A 8:1413–1422

    Article  Google Scholar 

  11. Black JR, Kingery WD (1979) Segregation of aliovalent solutes adjacent surfaces in MgO. J Am Ceram Soc 62:176–178

    Article  CAS  Google Scholar 

  12. Baik S, White CL (1987) Anisotropic calcium segregation to the surface of Al2O3. J Am Ceram Soc 70:682–688

    Article  CAS  Google Scholar 

  13. Burggraaf A, Winnubst A (1988) Segregation in oxide surfaces, solid electrolytes and mixed conductors. In: Nowotny J (ed) Surface and Near-Surface Chemistry of Oxide Materials. Elsevier, Amsterdam, Netherlands, pp 448–477

  14. Bernasik A, Rekas M, Sloma M et al (1994) Electrical surface versus bulk properties of Fe-doped TiO2 single crystals. Solid State Ionics 72:12–18

    Article  CAS  Google Scholar 

  15. Jayamaha U, Atanacio A, Bak T et al (2015) Effect of oxygen activity on chromium segregation in Cr-doped TiO2 single crystal. Ionics 21:785–790

    Article  CAS  Google Scholar 

  16. Rahman KA, Bak T, Atanacio A, Ionescu M, Liu R, Nowotny J (2018) Towards sustainable energy: photocatalysis of Cr-doped TiO2. 5. Effect of segregation on surface versus bulk composition. Ionics 24:1–9

    Article  CAS  Google Scholar 

  17. Kim R et al (2014) Charge and magnetic states of rutile TiO2 doped with Cr ions. J Phys Condens Matter 26(14):146003

    Article  CAS  PubMed  Google Scholar 

  18. Hajjaji A et al (2014) Cr-doped TiO2 thin films prepared by means of a magnetron co-sputtering process: photocatalytic application. Am J Anal Chem 05:473–482

    Article  CAS  Google Scholar 

  19. Radecka M et al (2003) Study of the TiO2–Cr2O3 system for photoelectrolytic decomposition of water. Solid State Ionics 157(1):379–386

    Article  CAS  Google Scholar 

  20. Dholam R et al (2010) Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydrog Energy 35(18):9581–9590

    Article  CAS  Google Scholar 

  21. Diaz-Uribe C, Vallejo W, Ramos W (2014) Methylene blue photocatalytic mineralization under visible irradiation on TiO2 thin films doped with chromium. Appl Surf Sci 319:121–127

    Article  CAS  Google Scholar 

  22. Mardare D et al (2005) Chromium-doped titanium oxide thin films. Mater Sci Eng B 118(1):187–191

    Article  CAS  Google Scholar 

  23. Wilke K, Breuer H (1999) The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photochem Photobiol A Chem 121(1):49–53

    Article  CAS  Google Scholar 

  24. López R, Gómez R, Oros-Ruiz S (2011) Photophysical and photocatalytic properties of TiO2-Cr sol–gel prepared semiconductors. Catal Today 166:159–165

    Article  CAS  Google Scholar 

  25. Jaimy KB et al (2011) An aqueous sol–gel synthesis of chromium (III) doped mesoporous titanium dioxide for visible light photocatalysis. Mater Res Bull 46(6):914–921

    Article  CAS  Google Scholar 

  26. Choudhury B, Choudhury A (2012) Dopant induced changes in structural and optical properties of Cr3+ doped TiO2 nanoparticles. Mater Chem Phys 132(2):1112–1118

    Article  CAS  Google Scholar 

  27. Michalow KA et al (2013) Flame-made visible light active TiO2:Cr photocatalysts: correlation between structural, optical and photocatalytic properties. Catal Today 209:47–53

    Article  CAS  Google Scholar 

  28. Zhang S et al (2008) Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J Nanopart Res 10(5):871–875

    Article  CAS  Google Scholar 

  29. Gong J et al (2012) A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property. Electrochim Acta 68:178–183

    Article  CAS  Google Scholar 

  30. Momeni MM, Ghayeb Y (2015) Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J Alloys Compd 637:393–400

    Article  CAS  Google Scholar 

  31. Zhu J, Deng Z, Chen F et al (2006) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B-Environ 62:329–335

    Article  CAS  Google Scholar 

  32. Li X, Guo Z, He T (2013) The doping mechanism of Cr into TiO2 and its influence on the photocatalytic performance. Phys Chem Chem Phys 15:20037–20045

    Article  CAS  PubMed  Google Scholar 

  33. Zhu H, Tao J, Dong X (2010) Preparation and photoelectrochemical activity of Cr-doped TiO2 nanorods with nanocavities. J Phys Chem C 114:2873–2879

    Article  CAS  Google Scholar 

  34. Peng YH, Huang GF, Huang WQ (2012) Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Mater Sci Forum 23:8–12

    CAS  Google Scholar 

  35. Li Y, Wlodarski W, Galatsis K et al (2002) Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films. Sensors Actuators B Chem 83:160–163

    Article  CAS  Google Scholar 

  36. Chan MH, Ho WY, Wang D-Y et al (2007) Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma deposition. Surf Coat Technol 202:962–966

    Article  CAS  Google Scholar 

  37. Highfielda JG, Pichat P (1989) Photoacoustic study of the influence of platinum Kloading and bulk doping with chroniiuivi (III) ions on the reversible photochromic effect in titanium dioxide. Correlation with photocatalytic properties. New J Chem 13:61

    Google Scholar 

  38. Sōmiya S, Hirano S, Kamiya S (1978) Phase relations of the Cr2O3-TiO2 system. J Solid State Chem 25:273–284

    Article  Google Scholar 

  39. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  40. Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  41. Mardare D, Iacomi F, Cornei N et al (2010) Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films 518:4586–4589

    Article  CAS  Google Scholar 

  42. Rahman KA, Bak T, Atanacio A, Ionescu M, Nowotny J (2018) Toward sustainable energy: photocatalysis of Cr-doped TiO2: 2. Effect of defect disorder. Int J Ionics 24:327-341

  43. Bak T, Nowotny J, Sucher NJ et al (2011) Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria. J Phys Chem C. 115:15711–15738

    Article  CAS  Google Scholar 

  44. Kröger F, Vink H (1956) Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3:307–435

    Article  Google Scholar 

  45. Bechstein R, Kitta M, Schütte J et al (2009) Evidence for vacancy creation by chromium doping of rutile titanium dioxide (110). J Phys Chem C 113:3277–3280

    Article  CAS  Google Scholar 

  46. Shannon RT (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  47. Carpentier JL, Lebrun A, Perdu F (1989) Point defects and charge transport in pure and chromium-doped rutile at 1273 K. J Phys Chem Solids 50(2):145–151

    Article  CAS  Google Scholar 

  48. Stoneham AM (1980) Theory of defect processes. Phys Today 33:34–37

    Article  CAS  Google Scholar 

  49. Atanacio AJ, Bak T, Chu D, Ionescu M, Nowotny J (2014) Segregation-induced low-dimensional surface structures in oxide semiconductors. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of Nanomaterials Properties. Springer-Verlag, Berlin/Heidelberg, Germany, pp 891–910

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nowotny.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, K.A., Sharma, N., Atanacio, A.J. et al. Chromium segregation in Cr-doped TiO2 (rutile): impact of oxygen activity. Ionics 25, 3363–3372 (2019). https://doi.org/10.1007/s11581-018-2828-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2828-4

Keywords

Navigation