Protonic cell performance employing electrolytes based on plasticized methylcellulose-potato starch-NH4NO3

Abstract

Electrolytes consisting of methylcellulose/potato starch blend incorporated with ammonium nitrate (NH4NO3) are prepared by solution cast method. Field emission scanning electron microscopy (FESEM) discovers that methylcellulose and starch are miscible. Cation transference number (tcat) of the highest conducting electrolyte is discovered to be 0.40. Linear sweep voltammetry (LSV) show that the electrolyte is stable in the voltage range of 1.50 to 1.88 V from 298 to 343 K. Protonic conduction in the electrolyte has been further proven via cyclic voltammetry using both reversible Zn + ZnSO4·7H2O and blocking stainless steel electrodes. The open circuit voltage (Voc) of the protonic cell is lasted for 24 h at 1.52 V. The value of Voc is inversely proportional to the temperature. The maximum capacity, internal resistance, and power density of the protonic cell at 343 K are found to be 42 mA h, 17 Ω, and 13.5 mW cm−2, respectively. Rechargeability of the protonic cell has been examined for 15 cycles at different constant current.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Reference

  1. 1.

    Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1998) Conducting polymerbased electrochemical redox supercapacitors using proton and lithium ion conducting polymer electrolytes. Polym Int 47:28–33. https://doi.org/10.1002/(SICI)1097-0126(199809)47

    Article  CAS  Google Scholar 

  2. 2.

    Panero S, Ciuffa F, D’Epifano A, Scrosati B (2003) New concepts for the development of lithium and proton conducting membranes. Electrochim Acta 48(14–16):2009–2014. https://doi.org/10.1016/S0013-4686(03)00179-8

    Article  CAS  Google Scholar 

  3. 3.

    Shukur MF, Kadir MFZ Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim Acta 158:152–165. https://doi.org/10.1016/j.electacta.2015.01.167

  4. 4.

    Dose WM, Donne SW (2014) Optimising heat treatment environment and atmosphere of electrolytic manganese dioxide for primary Li/MnO2 batteries. J Power Sources 247:852–857. https://doi.org/10.1016/j.jpowsour.2013.08.142

    Article  CAS  Google Scholar 

  5. 5.

    Chen T, Ma H, Kong D Discharge performance of nanostructured PbO2 microspheres as the positive active material. Mater Lett 90:103–106. https://doi.org/10.1016/j.matlet.2012.09.058

  6. 6.

    Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J (2015) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7:80–84. https://doi.org/10.1021/am508001h

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Ali AMM, Mohamed NS, Arof AK (1998) Polyethylene oxide (PEO)–ammonium sulfate ((NH4)2SO4) complexes and electrochemical cell performance. J Power Sources 74:135–141. https://doi.org/10.1016/S0378-7753(98)00045-7

    Article  CAS  Google Scholar 

  8. 8.

    Alias SS, Chee SM, Mohamad AA Chitosan–ammonium acetate–ethylene carbonate membrane for proton batteries. Arab J Chem 10:S3687–S3698. https://doi.org/10.1016/j.arabjc.2014.05.001

  9. 9.

    Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357:3654–3660. https://doi.org/10.1016/j.jnoncrysol.2011.06.030

  10. 10.

    Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR, Arof AK (2010) Characteristics ofmethyl cellulose-NH4NO3-PEG electrolyte and application in fuel cells. J Solid State Electrochem 14:2153–2159. https://doi.org/10.1007/s10008-010-1099-4

    Article  CAS  Google Scholar 

  11. 11.

    Andrade J, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483. https://doi.org/10.1016/j.electacta.2009.05.098

    Article  CAS  Google Scholar 

  12. 12.

    Mobarak NN, Ramli N, Ahmad A, Rahman MYA (2013) Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ionics 224:51–57. https://doi.org/10.1016/j.ssi.2012.07.010

    Article  CAS  Google Scholar 

  13. 13.

    Shukur MF, Majid NA, Ithnin R, Kadir MFZ (2013) Effect of plasticization on the conductivity and dielectric properties of starch–chitosan blend biopolymer electrolytes infused with NH4Br. Phys Scr T157:014051. https://doi.org/10.1088/0031-8949/2013/T157/014051

    Article  CAS  Google Scholar 

  14. 14.

    Tan CH, Ahmad A, Anuar FH (2014) Synthesis and characterization of polylactide-poly(ethylene glycol) block copolymer as solid polymer electrolyte. Asian J Chem 26:S230–S236. https://doi.org/10.14233/ajchem.2014.19059

    Article  Google Scholar 

  15. 15.

    Kadir MFZ, Hamsan MH (2017) Green electrolytes based on dextran-chitosan blend and the effect of NH4SCN as proton provider on the electrical response studies. Ionics 24:2379–2398. https://doi.org/10.1007/s11581-017-2380-7

    Article  CAS  Google Scholar 

  16. 16.

    Song A, Huang Y, Zhong X, Cao H, Liu B, Lin Y, Wang M, Li X (2017) Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocelluloses. Electrochim Acta 245:982–992. https://doi.org/10.1016/j.electacta.2017.05.176

    Article  CAS  Google Scholar 

  17. 17.

    Song A, Huang Y, Liu B, Cao H, Zhong X, Lin Y, Wang M, Li X, Zhong W (2017) Gel polymer electrolyte based on polyethylene glycol compositelignocellulose matrix with higher comprehensive performances. Electrochim Acta 247:505–515. https://doi.org/10.1016/j.electacta.2017.07.048

    Article  CAS  Google Scholar 

  18. 18.

    Kampeerapappun P, Aht-ong D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohydr Polym 67:155–163. https://doi.org/10.1016/j.carbpol.2006.05.012

    Article  CAS  Google Scholar 

  19. 19.

    Abd El-Kader MFH, Ragab HS (2013) DC conductivity and dielectric properties of maize starch/methylcellulose blend films. Ionics 19:361–369. https://doi.org/10.1007/s11581-012-0742-8

    Article  CAS  Google Scholar 

  20. 20.

    Miyamoto H, Yamane C, Seguchi M, Okajima K (2009) Structure and properties of cellulose-starch blend films regenerated from aqueous sodium hydroxide solution. Food Sci Technol Res 15:403–412. https://doi.org/10.3136/fstr.15.403

    Article  CAS  Google Scholar 

  21. 21.

    Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochim Acta 48:205–209. https://doi.org/10.1016/S0013-4686(02)00603-5

    Article  CAS  Google Scholar 

  22. 22.

    Ibrahim S, Yasin SMM, Nee NM, Ahmad R, Johan RM (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun 152:426–434. https://doi.org/10.1016/j.ssc.2011.11.037

    Article  CAS  Google Scholar 

  23. 23.

    Kumar M, Sekhon SS (2002) Role of plasticizer’s dielectric constant on conductivity modification of PEO–NH4F polymer electrolytes. Eur Polym J 38:1297–1304. https://doi.org/10.1016/S0014-3057(01)00310-X

    Article  CAS  Google Scholar 

  24. 24.

    Hamsan MH, Shukur MF, Kadir MFZ (2017) The effect of NH4NO3 towards the conductivity enhancement and electrical behavior in methyl cellulose-starch blend based ionic conductors. Ionics 23:1137–1154. https://doi.org/10.1007/s11581-016-1918-4

    Article  CAS  Google Scholar 

  25. 25.

    Shuhaimi NEA, Majid SR, Arof AK (2009) On complexation between methyl cellulose and ammonium nitrate. Mater Res Innov 13:239–242. https://doi.org/10.1179/143307509X440406

    Article  CAS  Google Scholar 

  26. 26.

    Khiar AS, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129. https://doi.org/10.1007/s11581-009-0356-y

    Article  CAS  Google Scholar 

  27. 27.

    Hamsan MH, Shukur MF, Kadir MFZ (2017) NH4NO3 as charge carrier contributor in glycerolized potato starch-methyl cellulose blend-based polymer electrolyte and the application in electrochemical double-layer capacitor. Ionics 23:3429–3453. https://doi.org/10.1007/s11581-017-2155-1

    Article  CAS  Google Scholar 

  28. 28.

    Kuo CW, Huang CW, Chen BK, Li WB, Chen PR, Ho TH, Tseng CG, Wu TY (2013) Enhanced ionic conductivity in PAN–PEGME-LiClO4-PC composite polymer electrolytes. Int J Electrochem Sci 8:3834–3850

    CAS  Google Scholar 

  29. 29.

    Watanabe M, Nagano S, Sanui K, Ogata N (1988) Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 28–30:911–917. https://doi.org/10.1016/0167-2738(88)90303-7

    Article  Google Scholar 

  30. 30.

    Wagner JB, Wagner CB (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601. https://doi.org/10.1063/1.1743590

    Article  CAS  Google Scholar 

  31. 31.

    Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13. https://doi.org/10.1016/j.electacta.2014.02.074

    Article  CAS  Google Scholar 

  32. 32.

    Halal TY, Colussi R, Deon VG, Pinto VZ, Villanova FA, Carreno NLV, Zavareze ER (2015) Films based on oxidized starch and cellulose from barley. Carbohydr Polym 133:644–653. https://doi.org/10.1016/j.carbpol.2015.07.024

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Yusof YM, Kadir MFZ (2016) Electrochemical characterizations and the effect of glycerol in biopolymer electrolytes based on methylcellulose-potato starch blend. Mol Cryst Liq Cryst 627:220–233. https://doi.org/10.1080/15421406.2015.1137115

    Article  CAS  Google Scholar 

  34. 34.

    Tongdeesoon W, Mauer LJ, Wongruong S, Sriburi P, Rachtanap P (2011) Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem Cent J 5:1. https://doi.org/10.1186/1752-153X-5-6

    Article  CAS  Google Scholar 

  35. 35.

    Babu K, Bera A, Kumari K, Mandal A, Saxena VK (2014) Characterization and application of methylcellulose and potato starch blended films in controlled release of urea. J Polym Eng 35(79). https://doi.org/10.1515/polyeng-2014-0118

  36. 36.

    Salleh NS, Aziz SB, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22:2157–2167. https://doi.org/10.1007/s11581-016-1731-0

    Article  CAS  Google Scholar 

  37. 37.

    Azli AA, Manan NSA, Kadir MFZ (2017) The development of Li+ conducting polymer electrolyte based on potato starch/graphene oxide blend. Ionics 23:411–425. https://doi.org/10.1007/s11581-016-1874-z

    Article  CAS  Google Scholar 

  38. 38.

    Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745

    Article  CAS  Google Scholar 

  39. 39.

    Kadir MFZ (2010) Characteristics of proton conducting PVA-chitosan polymer blend electrolytes. Ph.D Thesis, University of Malaya

  40. 40.

    Latif F, Aziz M (2013) The anti-plasticization effects of dimethyl carbonate plasticizer in poly (methyl metacrylate) electrolyte containing rubber. Mater Sci Appl 4:663–666. https://doi.org/10.4236/msa.2013.411082

    CAS  Article  Google Scholar 

  41. 41.

    Gobel K, Kachan DK (2018) Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO4 salt. J Adv Dielectr 8:1850005–1850018. https://doi.org/10.1142/S2010135X18500054

    Article  CAS  Google Scholar 

  42. 42.

    Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly(ϵ-caprolactone). Mater Res Innov 15:s49–s54. https://doi.org/10.1179/143307511X13031890747697

    Article  Google Scholar 

  43. 43.

    Shukur MF, Kadir MFZ (2014) Electrical and transport properties of NH4Br-doped corn starch-based solid biopolymer electrolyte. Ionics 136:204–217

    CAS  Google Scholar 

  44. 44.

    Kufian MZ, Aziz MF, Shukur MF, Rahim AS, Ariffin NE, Shuhaimi NEA, Majid SR, Yahya R, Arof AK (2012) PMMA LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics 208:36–42

    Article  CAS  Google Scholar 

  45. 45.

    Yusof YM, Illias HA, Shukur MF, Kadir MFZ (2017) Characterization of starch-chitosan blend-based electrolyte doped with ammonium iodide for application in proton batteries. Ionics 23:681–697. https://doi.org/10.1007/s11581-016-1856-1

    Article  CAS  Google Scholar 

  46. 46.

    Lee JH, Lee AS, Lee J-C, Hong M, Hwang SS, Koo CM (2015) Hybrid ionogel electrolytes for high temperature lithium batteries. J Mater Chem A 3:2226–2233. https://doi.org/10.1039/C4TA06062H

    Article  CAS  Google Scholar 

  47. 47.

    Lee H, Kim J, Lim T, Sung Y-E, Kim HJ, Lee HN, Kwon OJ, Cho YH (2017) A facile synthetic strategy for iron, aniline-based non-precious metal catalysts for polymer electrolyte membrane fuel cell. Sci Rep 7:5396. https://doi.org/10.1038/s41598-017-05830-y2017

  48. 48.

    Cao X, He X, Wang J, Liu H, Roser S, Rad BR, Evertz M, Streipert B, Li J, Wagner R, Winter M, Cekic-Laskovic I (2016) High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium ion cells at elevated temperatures: carbonate versus ionic liquid-based electrolytes. ACS Appl Mater Interfaces 8:25971–25978. https://doi.org/10.1021/acsami.6b07687

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solidstate proton battery. J Power Sources 161:702–706. https://doi.org/10.1016/j.jpowsour.2006.04.020

  50. 50.

    Sellam HSA (2012) Enhanced zinc ion transport in gel polymer electrolyte: effect of nano-sized ZnO dispersion. J Solid State Electrochem 16:3105–3114. https://doi.org/10.1007/s10008-012-1733-4

    Article  CAS  Google Scholar 

  51. 51.

    Kumar D, Hashmi SA (2010) Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195:5101–5108. https://doi.org/10.1016/j.jpowsour.2010.02.026

    Article  CAS  Google Scholar 

  52. 52.

    Munichandraiah N, Scanlon LG, Marsh RA, Kumar B, Sircar AK (1995) Influence of zeolite on electrochemical and physicochemical properties of polyethylene oxide solid electrolyte. J Appl Electrochem 25:857–863. https://doi.org/10.1007/bf00233905

    Article  CAS  Google Scholar 

  53. 53.

    Monisha S, Mathavana T, Selvasekarapandian S, Milton T, Franklin B, Aristatil G, Mani N, Premalatha M, Vinoth D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47. https://doi.org/10.1016/j.carbpol.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Mishra K, Hashmi SA, Rai DK (2014) Studies on a proton battery using gel polymer electrolyte. High Perform Polym 26:672–676. https://doi.org/10.1177/0954008314537540

    Article  CAS  Google Scholar 

  55. 55.

    Ng LS, Mohamad AA (2008) Effect of temperature on the performance of proton batteries based on chitosan–NH4NO3–EC membrane. J Membr Sci 325:653–657. https://doi.org/10.1016/j.memsci.2008.08.029

    Article  CAS  Google Scholar 

  56. 56.

    Vanysek P (2011) Electrochemical series. In: Haynes WM (ed) Handbook of chemistry and physics, 92nd edn. CRC, Press, Boca Raton, pp 5–80

    Google Scholar 

  57. 57.

    Botte GG, Muthuvel M (2012) Electrochemical energy storage: applications, processes, and trends. In: Kent JA (ed) Handbook of industrial chemistry and biotechnology. Springer, Palmetto Bay, p 1497

    Google Scholar 

  58. 58.

    McComsey DW (2001) Zinc-carbon batteries (Leclanche and zinc chloride cell systems), in: D. Linden. In: Reddy TB (ed) Handbook of Batteries, 3rd edn. McGraw-Hill Professional, New York 8, 1

    Google Scholar 

  59. 59.

    Rahman MM, Gruner G, Al-Ghamdi MS, Daous MA, Khan SB, Asiri AM (2013) Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes. Chem Cent J 7:60. https://doi.org/10.1186/1752-153X-7-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Wang CY, Sun J, Liu HK, Dou SX, MacFarlace D, Forsyth M (2005) Potential application of solid electrolyte P11 OH in Ni/MH batteries. Synth Met 152:57–60. https://doi.org/10.1016/j.synthmet.2005.07.125

    Article  CAS  Google Scholar 

  61. 61.

    Roscher MA, Bohlen O, Vetter J (2011) OCV hysteresis in Li-ion batteries including two-phase transition materials. Int J Electrochem 2011:984320. https://doi.org/10.4061/2011/984320

    Article  CAS  Google Scholar 

  62. 62.

    Broadhead J, Kuo HC (2001) In: Linden D, Reddy TB (eds) Electrochemical principles and reactions, 3rd ed; handbook of batteries, vol 2. McGraw-hill, New York, pp 10–2.37

    Google Scholar 

  63. 63.

    Yap SC, Mohamad AA (2007) Proton batteries with hydroponics gel as gel polymer electrolyte. Electrochem Solid-State Lett 10:A139–A141. https://doi.org/10.1149/1.2717366

    Article  CAS  Google Scholar 

  64. 64.

    Mohamed NS, Subban RHY, Arof AK (1995) Polymer batteries fabricated from lithium complexed acetylated chitosan. J Power Sources 56:153–156. https://doi.org/10.1016/0378-7753(95)80027-E

    Article  CAS  Google Scholar 

  65. 65.

    Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan-PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482. https://doi.org/10.1016/j.electacta.2009.05.011

    Article  CAS  Google Scholar 

  66. 66.

    Jamaludin A, Mohamad A (2010) Application of liquid gel polymer electrolyte based on chitosan-NH4NO3 for proton batteries. J Appl Polym Sci 118:1240–1243. https://doi.org/10.1002/app.32445

    CAS  Article  Google Scholar 

  67. 67.

    Mishra K, Hashmi SA, Rai DK (2013) Nanocomposite blend gel polymer electrolyte for proton battery application. J Solid State Electrochem 17:785–793. https://doi.org/10.1007/s10008-012-1926-x

    Article  CAS  Google Scholar 

  68. 68.

    Mishra K, Hashmi SA, Rai DK (2014) Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery. J Solid State Electrochem 18:2255–2266. https://doi.org/10.1007/s10008-014-2475-2

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the Ministry of Higher Education (MOHE) and University of Malaya with grant nos. FP009-2015A and BKS005-2018.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. F. Z. Kadir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamsan, M.H., Aziz, S.B., Shukur, M.F. et al. Protonic cell performance employing electrolytes based on plasticized methylcellulose-potato starch-NH4NO3. Ionics 25, 559–572 (2019). https://doi.org/10.1007/s11581-018-2827-5

Download citation

Keywords

  • Polymer blend
  • Power density
  • Ammonium nitrate
  • Glycerol
  • Proton batteries