Abstract
With the use of sol-gel technology, we obtained ZrO2-xY2O3 powders and thin films (where х = 0, 5, 10, 15, 20, 33, 40, 50 mol%) that are promising for the creation of chemical gas sensors. The phase composition was studied using XRD and Raman spectroscopy. It has been shown that an increase in the content of yttrium oxide from 0 to 50 mol% entails phase changes in the structure of zirconium dioxide—from the monoclinic phase (ZrO2) to metastable tetragonal (up to 10% of Y2O3), cubic (up to 20% of Y2O3), and rhombohedral (up to 50% of Y2O3) phases. For thin films, gas-sensing properties were studied: we established a resistive response to oxygen at low operating temperatures of 350–450 °C that increased with an increase in the Y2O3 content in the crystal lattice. Films with a Y2O3 content of more than 33 mol% showed a resistive response to hydrogen.

Graphical abstract
This is a preview of subscription content, access via your institution.






References
UHMS Committtee HOC (2014) Hyperbaric Oxygen Therapy Indications. Durham, USA
Kishimoto A, Hasunuma H, Teranishi T, Hayashi H (2015) Stabilisation dopant-dependent facilitation in ionic conductivity on millimeter-wave irradiation heating of zirconia-based ceramics. J Alloys Compd 648:740–744. https://doi.org/10.1016/j.jallcom.2015.07.057
Joo JH, Choi GM (2006) Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics 177:1053–1057. https://doi.org/10.1016/j.ssi.2006.04.008
Omar S, Bin Najib W, Chen W, Bonanos N (2012) Electrical conductivity of 10 mol% Sc2O3-1 mol% M2O3-ZrO2 ceramics. J Am Ceram Soc 95:1965–1972. https://doi.org/10.1111/j.1551-2916.2012.05126.x
Ihara M, Kusano T, Yokoyama C (2001) Competitive adsorption reaction mechanism of Ni/yttria-stabilized zirconia cermet anodes in H2-H2O solid oxide fuel cells. J Electrochem Soc 148:A209. https://doi.org/10.1149/1.1345873
Subbarao EC, Maiti HS (1984) Solid electrolytes with oxygen ion conduction. Solid State Ionics 11:317–338. https://doi.org/10.1016/0167-2738(84)90024-9
Ruff O, Ebert F, Stephan E (1929) Beitrage zur Keramik hochfeuerfester Stoffe II. Das System ZrO2-CaO. Z anorg allg Chem 180:215–224. https://doi.org/10.1002/zaac.19291800122
Ruff O, Ebert F (1929) Beitrage zur Keramik hochfeuerfester Stoffe. l. Die Formen des Zirkondioxyds. Z anorg allg Chem 180:19–41. https://doi.org/10.1002/zaac.19291800104
Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ionics 86–88:1131–1149. https://doi.org/10.1016/0167-2738(96)00386-4
Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) Raman scattering study of cubic-tetragonal phase transition in ZrCeO2. J Am Ceram Soc 77:1067–1071. https://doi.org/10.1111/j.1151-2916.1994.tb07270.x
Goff J, Hayes W, Hull S et al (1999) Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys Rev B 59:14202–14219. https://doi.org/10.1103/PhysRevB.59.14202
Cousland GP, Cui XY, Ringer S, Smith AE, Stampfl APJ, Stampfl CM (2014) Electronic and vibrational properties of yttria-stabilised zirconia from first-principles for 10-40 mol% Y2O3. J Phys Chem Solids 75:1252–1264. https://doi.org/10.1016/j.jpcs.2014.05.015
Hemberger Y, Wichtner N, Berthold C, Nickel KG (2016) Quantification of yttria in stabilized zirconia by Raman spectroscopy. Int J Appl Ceram Technol 13:116–124. https://doi.org/10.1111/ijac.12434
Fábregas IO, Craievich AF, Fantini MCA, Millen RP, Temperini MLA, Lamas DG (2011) Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion. J Alloys Compd 509:5177–5182. https://doi.org/10.1016/j.jallcom.2011.01.213
Norby T, Kofstad P (1984) Electrical conductivity and defects structure of Y2O3 as a function of water vapor pressure. J Am Ceram Soc 67:786–792
Norby T, Kofstad P (1986) Direct-current conductivity of Y2O3 as a function of water vapor pressure. J Am Ceram Soc 69:780–783. https://doi.org/10.1111/j.1151-2916.1986.tb07359.x
Norby T, Kofstad P (1986) Proton and native-ion conductivities in Y2O3 at high temperatures. Solid State Ionics 20:169–184. https://doi.org/10.1016/0167-2738(86)90211-0
Shafer MW, ROY R (1959) Rare-earth polymorphism and phase equilibria in rare-earth oxide-water systems. J Am Ceram Soc 42:563–570. https://doi.org/10.1111/j.1151-2916.1959.tb13574.x
Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: materials, methods, designs. J Mater Sci 38:4271–4282
Cirera A, Lpez-Gándara C, Ramos FM (2009) YSZ-based oxygen sensors and the use of nanomaterials: a review from classical models to current trends. J Sensors 2009:1–15. https://doi.org/10.1155/2009/258489
Lari A, Khodadadi A, Mortazavi Y (2009) Semiconducting metal oxides as electrode material for YSZ-based oxygen sensors. Sensors Actuators B Chem 139:361–368. https://doi.org/10.1016/j.snb.2009.03.003
Xia C, Lu X, Yan Y et al (2011) Preparation of nano-structured Pt-YSZ composite and its application in oxygen potentiometric sensor. Appl Surf Sci 257:7952–7958. https://doi.org/10.1016/j.apsusc.2011.04.005
Fischer S, Pohle R, Magori E, Fleischer M, Moos R (2014) Detection of NO by pulsed polarization technique using Pt interdigital electrodes on yttria-stabilized zirconia. Procedia Engineering 87:620–623. https://doi.org/10.1016/j.proeng.2014.11.565
Zhuiykov S, Miura N (2007) Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: what are the prospects for sensors? Sensors Actuators B Chem 121:639–651. https://doi.org/10.1016/j.snb.2006.03.044
Lu G, Diao Q, Yin C, Yang S, Guan Y, Cheng X, Liang X (2014) High performance mixed-potential type NOx sensor based on stabilized zirconia and oxide electrode. Solid State Ionics 262:292–297. https://doi.org/10.1016/j.ssi.2014.01.037
Yin C, Guan Y, Zhu Z, Liang X, Wang B, Diao Q, Zhang H, Ma J, Liu F, Sun Y, Zheng J, Lu G (2013) Highly sensitive mixed-potential-type NO2 sensor using porous double-layer YSZ substrate. Sensors Actuators B Chem 183:474–477. https://doi.org/10.1016/j.snb.2013.03.064
Rheaume JM, Pisano AP (2011) A review of recent progress in sensing of gas concentration by impedance change. Ionics 17:99–108. https://doi.org/10.1007/s11581-010-0515-1
Di Bartolomeo E, Grilli ML, Yoon JW, Traversa E (2004) Zirconia-based electrochemical NOx sensors with semiconducting oxide electrodes. J Am Ceram Soc 87:1883–1889. https://doi.org/10.1111/j.1151-2916.2004.tb06335.x
Mori M, Itagaki Y, Sadaoka Y (2012) VOC detection by potentiometric oxygen sensor based on YSZ and modified Pt electrodes. Sensors Actuators B Chem 161:471–479. https://doi.org/10.1016/j.snb.2011.10.063
Mori M, Nishimura H, Itagaki Y, Sadaoka Y, Traversa E (2009) Detection of sub-ppm level of VOCs based on a Pt/YSZ/Pt potentiometric oxygen sensor with reference air. Sensors Actuators B Chem 143:56–61. https://doi.org/10.1016/j.snb.2009.09.001
Mori M, Sadaoka Y, Nakagawa S, Kida M, Kojima T (2013) Development of ethanol and toluene sensing devices with a planar-type structure based on YSZ and modified Pt electrodes. Sensors Actuators B Chem 187:509–513. https://doi.org/10.1016/j.snb.2013.03.005
Dimitrov DT, Dushkin CD, Petrova NL, Todorovska RV, Todorovsky DS, Anastasova SY, Oliver DH (2007) Oxygen detection using junctions based on thin films of yttria-stabilized zirconia doped with platinum nanoparticles and pure yttria-stabilized zirconia. Sensors Actuators A Phys 137:86–95. https://doi.org/10.1016/j.sna.2007.02.022
Simonenko NP, Simonenko EP, Mokrushin AS, Popov VS, Vasiliev AA, Sevastyanov VG, Kuznetsov NT (2017) Thin films of the composition 8%Y2O3–92%ZrO2 (8YSZ) as gas-sensing materials for oxygen detection. Russ J Inorg Chem 62:695–701. https://doi.org/10.1134/S0036023617060213
Bae JW, Park JY, Hwang SW, Yeom GY, Kim KD, Cho YA, Jeon JS, Choi D (2000) Characterization of yttria-stabilized zirconia thin films prepared by radio frequency magnetron sputtering for a combustion control oxygen sensor. J Electrochem Soc 147:2380–2384
Jiang J, Hu X, Shen W, Ni C, Hertz JL (2013) Improved ionic conductivity in strained yttria-stabilized zirconia thin films. Appl Phys Lett 102:143901. https://doi.org/10.1063/1.4801649
Sentosa D, Liu B, Wong LM, Lim YV, Wong TI, Foo YL, Sun HD, Wang SJ (2011) Temperature dependent photoluminescence studies of ZnO thin film grown on (111) YSZ substrate. J Cryst Growth 319:8–12. https://doi.org/10.1016/j.jcrysgro.2011.01.029
Aydin H, Korte C, Rohnke M, Janek J (2013) Oxygen tracer diffusion along interfaces of strained Y2O3/YSZ multilayers. Phys Chem Chem Phys 15:1944–1955. https://doi.org/10.1039/C2CP43231E
Kosacki I, Rouleau CM, Becher PF et al (2005) Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176:1319–1326. https://doi.org/10.1016/j.ssi.2005.02.021
Amézaga-Madrid P, Antúnez-Flores W, González-Hernández J, Sáenz-Hernández J, Campos-Venegas K, Solís-Canto O, Ornelas-Gutiérrez C, Vega-Becerra O, Martínez-Sánchez R, Miki-Yoshida M (2010) Microstructural properties of multi-nano-layered YSZ thin films. J Alloys Compd 495:629–633. https://doi.org/10.1016/j.jallcom.2009.10.257
Wang HB, Xia CR, Meng GY, Peng DK (2000) Deposition and characterization of YSZ thin films by aerosol-assisted CVD. Mater Lett 44:23–28. https://doi.org/10.1016/S0167-577X(99)00291-8
Chao CC, Park JS, Tian X, Shim JH, Gür TM, Prinz FB (2013) Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia. ACS Nano 7:2186–2191. https://doi.org/10.1021/nn305122f
Gadea C, Hanniet Q, Lesch A, Marani D, Jensen SH, Esposito V (2017) Aqueous metal–organic solutions for YSZ thin film inkjet deposition. J Mater Chem C 5:6021–6029. https://doi.org/10.1039/C7TC01879G
Sekhar PK, Sarraf H, Mekonen H, Mukundan R, Brosha EL, Garzon FH (2013) Impedance spectroscopy based characterization of an electrochemical propylene sensor. Sensors Actuators B Chem 177:111–115. https://doi.org/10.1016/j.snb.2012.10.137
Simonenko NP, Simonenko EP, Sevastyanov VG, Kuznetsov NT (2015) Production of 8%Y2O3-92%ZrO2 (8YSZ) thin films by sol-gel technology. Russ J Inorg Chem 60:878–886. https://doi.org/10.1134/S0036023615070153
Simonenko NP, Simonenko EP, Sevastyanov VG, Kuznetsov NT (2016) Preparation of nanostructured thin films of yttrium aluminum garnet (Y3Al5O12) by sol—gel technology. Russ J Inorg Chem 61:805–810. https://doi.org/10.1134/S003602361606019X
Sevastyanov VG, Simonenko EP, Simonenko NP et al (2018) Sol-gel made titanium dioxide nanostructured thin films as gas-sensing material for oxygen detection. Mendeleev Commun 28:164–166. https://doi.org/10.1016/j.mencom.2018.03.018
Skandan G, Foster CM, Frase H, Ali MN, Parker JC, Hahn H (1992) Phase characterization and stabilization due to grain size effects of nanostructured Y2O3. Nanostruct Mater 1:313–322. https://doi.org/10.1016/0965-9773(92)90038-Y
Sevast’yanov VG, Simonenko EP, Simonenko NP, Kuznetsov NT (2012) Synthesis of ultrafine refractory oxides zirconia-hafnia-yttria by sol-gel technology. Russ J Inorg Chem 57:307–312. https://doi.org/10.1134/S0036023612030278
Yashima M, Ohtake K, Arashi H, Kakihana M, Yoshimura M (1993) Determination of cubic-tetragonal phase boundary in Zr1-XYXO2-X/2 solid solutions by Raman spectroscopy. J Appl Phys 74:7603–7605. https://doi.org/10.1063/1.354989
Winter MR, Clarke DR (2007) Oxide materials with low thermal conductivity. J Am Ceram Soc 90:533–540. https://doi.org/10.1111/j.1551-2916.2006.01410.x
Siu GG, Stokes MJ, Liu Y (1999) Variation of fundamental and higher-order raman spectra of ZrO2 nanograins with annealing temperature. Phys Rev B 59:3173–3179. https://doi.org/10.1103/PhysRevB.59.3173
Roy A, Sood AK (1995) Phonons and fractons in sol-gel alumina: Raman study. Pramana J Phys 44:201–209. https://doi.org/10.1007/BF02848471
Putilov LP, Tsidilkovski VI, Varaksin AN, Fishman AY (2012) Thermodynamics of Defect Formation and Hydration of Y2O3. Def Dif Forum 326–328:126–131 . https://doi.org/10.4028/www.scientific.net/DDF.326-32
Funding
The work was supported by the Russian Foundation for Basic Research (grant No. 18-03-00992).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mokrushin, A.S., Simonenko, E.P., Simonenko, N.P. et al. Microstructure, phase composition, and gas-sensing properties of nanostructured ZrO2-xY2O3 thin films and powders obtained by the sol-gel method. Ionics 25, 1259–1270 (2019). https://doi.org/10.1007/s11581-018-2820-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11581-018-2820-z
Keywords
- Sol-gel
- Yttrium-stabilized zirconium
- Gas sensor
- Thin films
- RAMAN spectroscopy