, Volume 25, Issue 6, pp 2887–2892 | Cite as

Nickel cobaltite nanoparticles: preparation, characterization, and catalytic activity

  • Mojtaba AminiEmail author
  • Fatemeh Bakhshi Ghameshloo
  • Sanjeev Gautam
  • Keun Hwa ChaeEmail author
Original Paper


The preparation and characterization of binary spinel nickel cobaltite, NiCo2O4 are presented by two methods. The prepared NiCo2O4 nanocomposites were tested for 1,3-dipolar cycloaddition reaction of different benzyl halides with phenylacetylene. The heterogeneity of the NiCo2O4 catalytic system was investigated using a hot filtration test, indicating that there is virtually no catalyst leaching into the reaction solution under the applied reaction conditions. Furthermore, our results show that the catalytic system can be reused four times without significant loss of stability or any additional treatment.


Nanoparticle Spinel Nickel cobaltite Azide–alkyne cycloaddition 



The authors thank the Research Council of the University of Maragheh for supporting this work.


  1. 1.
    Liu S, Hui KS, Hui KN, Yun JM, Kim KH (2016) Vertically stacked bilayer CuCo2O4/MnCo2O4heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J Mater Chem A 4:8061–8071CrossRefGoogle Scholar
  2. 2.
    Hwang SM, Kim SY, Kim J-G, Kim KJ, Lee J-W, Park M-S, Kim Y-J, Shahabuddin M, Yamauchi Y, Kim JH (2015) Electrospun manganese–cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nanoscale 7:8351–8355CrossRefGoogle Scholar
  3. 3.
    Naik KK, Sahoo S, Rout CS (2017) Facile electrochemical growth of spinel copper cobaltite nanosheets for non-enzymatic glucose sensing and supercapacitor applications. Microporous Mesoporous Mater 244:226–234CrossRefGoogle Scholar
  4. 4.
    Jeghan SMN, Kang M (2017) Facile synthesis and photocatalytic activity of cubic spinel urchin-like copper cobaltite architecture. Mater Res Bull 91:108–113CrossRefGoogle Scholar
  5. 5.
    Pendashteh A, Palma J, Anderson M, Marcilla R (2016) Facile synthesis of NiCoMnO4 nanoparticles as novel electrode materials for high-performance asymmetric energy storage devices. RSC Adv 6:28970–28980CrossRefGoogle Scholar
  6. 6.
    Jung K-N, Hwang SM, Park M-S, Kim KJ, Kim J-G, Dou SX, Kim JH, Lee J-W (2015) One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries. Sci Rep 5:7665CrossRefGoogle Scholar
  7. 7.
    Prasad R, Sony PS (2013) Low temperature complete combustion of a lean mixture of LPG emissions over cobaltite catalysts. Catal Sci Technol 3:3223–3233CrossRefGoogle Scholar
  8. 8.
    Park M-S, Kim J, Kim KJ, Lee J-W, Kim JH, Yamauchi Y (2015) Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Phys Chem Chem Phys 17:30963–30977CrossRefGoogle Scholar
  9. 9.
    Klissurski D, Uzunova E (1994) Synthesis and features of binary cobaltite spinels. J Mater Sci 29:285–293CrossRefGoogle Scholar
  10. 10.
    Abidat I, Morais C, Comminges C, Canaff C, Rousseau J, Guignard N, Napporn TW, Habrioux A, Kokoh KB (2017) Three dimensionally ordered mesoporous hydroxylated NixCo3−xO4 spinels for the oxygen evolution reaction: on the hydroxyl-induced surface restructuring effect. J Mater Chem A 5:7173–7183CrossRefGoogle Scholar
  11. 11.
    Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2:14759–14772CrossRefGoogle Scholar
  12. 12.
    Dubal DP, Gomez-Romero P, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 11:377–399CrossRefGoogle Scholar
  13. 13.
    Nguyen VH, Shim J-J (2016) Microwave-assisted synthesis of porous nickel cobaltite with different morphologies in ionic liquid and their application in supercapacitors. Mater Chem Phys 176:6–11CrossRefGoogle Scholar
  14. 14.
    Yin H, Zhan T, Qin D, He X, Nie Q, Gong J (2017) Self-assembly of dandelion-like NiCo2O4 hierarchical microspheres for non-enzymatic glucose sensor. Inorg Nano-Met Chem 47:1560–1567CrossRefGoogle Scholar
  15. 15.
    Das AK, Layek RK, Kim NH, Jung D, Lee JH (2014) Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation. Nanoscale 6:10657–10665CrossRefGoogle Scholar
  16. 16.
    Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D (2017) The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 22:1572–1581CrossRefGoogle Scholar
  17. 17.
    Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 28:278–308CrossRefGoogle Scholar
  18. 18.
    Fan W-Q, Katritzky AR In: 1,2,3-Triazoles. Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II, vol 4. Elsevier, Oxford, pp 1–126Google Scholar
  19. 19.
    Hein JE, Fokin VV (2010) Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chem Soc Rev 39:1302–1315CrossRefGoogle Scholar
  20. 20.
    Meldal M, Tornøe CW (2008) Cu-catalyzed azide−alkyne cycloaddition. Chem Rev 108:2952–3015CrossRefGoogle Scholar
  21. 21.
    Rana S, Lee SY, Cho JW (2010) Synthesis and characterization of biocompatible poly(ethylene glycol)-functionalized polyurethane using click chemistry. Polym Bull 64:401–411CrossRefGoogle Scholar
  22. 22.
    Whiting M, Muldoon J, Lin Y-C, Silverman SM, Lindstrom W, Olson AJ, Kolb HC, Finn MG, Sharpless KB, Elder JH, Fokin VV (2006) Inhibitors of HIV-1 protease by using in situ click chemistry. Angew Chem Int Ed 45:1435–1439CrossRefGoogle Scholar
  23. 23.
    Lewis WG, Green LG, Grynszpan F, Radić Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed 41:1053–1057CrossRefGoogle Scholar
  24. 24.
    Amini M, Tekantappeh SB, Eftekhari-Sis B, Derakhshandeh PG, Hecke KV (2017) Synthesis, characterization and catalytic properties of a copper-containing polyoxovanadate nanocluster in azide–alkyne cycloaddition. J Coord Chem 70:1564–1572CrossRefGoogle Scholar
  25. 25.
    Amini M, Nikkhoo M, Tekantappeh SB, Farnia SMF, Mahmoudi G, Büyükgüngör O (2017) Synthesis, characterization and catalytic properties of a copper complex containing decavanadate nanocluster, Na 2 [Cu(H 2 O) 6 ] 2 {V 10 O 28 }·4H 2 O. Inorg Chem Commun 77:72–76CrossRefGoogle Scholar
  26. 26.
    Amini M, Hassandoost R, Bagherzadeh M, Gautam S, Chae KH (2016) Copper nanoparticles supported on CeO2 as an efficient catalyst for click reactions of azides with alkynes. Catal Commun 85:13–16CrossRefGoogle Scholar
  27. 27.
    Touj N, Chakchouk-Mtibaa A, Mansour L, Harrath AH, Al-Tamimi JH, Özdemir I, Mellouli L, Yaşar S, Hamdi N (2017) Copper-catalyzed azide–alkyne cycloaddition (CuAAC) under mild condition in water: synthesis, catalytic application and biological activities. J Organomet Chem 853:49–63CrossRefGoogle Scholar
  28. 28.
    Amini M, Kafshdouzsani MH, Akbari A, Gautam S, Shim C-H, Chae KH (2018) Appl Organomet Chem 32.
  29. 29.
    Moghaddam FM, Pourkaveh R, Ahangarpour M (2018) Cobalt-copper ferrite nanoparticles catalyzed click reaction at room-temperature: green access to 1,2,3-triazole derivatives. ChemistrySelect 3:2586–2593CrossRefGoogle Scholar
  30. 30.
    Hu H, Guan B, Xia B, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137:5590–5595CrossRefGoogle Scholar
  31. 31.
    Khalid S, Cao C, Wang L, Zhu Y (2016) Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci Rep 6:22699CrossRefGoogle Scholar
  32. 32.
    Prakash P, Kumar RA, Miserque F, Geertsen V, Gravel E, Doris E (2018) Carbon nanotube–copper ferrite-catalyzed aqueous 1,3-dipolar cycloaddition of in situ-generated organic azides with alkynes. Chem Commun 54:3644–3647CrossRefGoogle Scholar
  33. 33.
    Hudson R, Li C-J, Moores A (2012) Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water. Green Chem 14:622–624CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of MaraghehMaraghehIran
  2. 2.Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab UniversityChandigarhIndia
  3. 3.Advanced Analysis CenterKorea Institute of Science and TechnologySeoulSouth Korea

Personalised recommendations