Skip to main content
Log in

Synthesis of sulfonated graphene/carbon nanotubes/manganese dioxide composite with high electrochemical properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Combining MnO2 with conductive carbon materials is an efficient approach to improve the electrical conductivity of MnO2-based electrodes, which could greatly improve the electrochemical performance of supercapacitors. Here, a ternary composite consisting of sulfonated graphene, carbon nanotubes, and manganese dioxide (SG/CNTs/MnO2) has been successfully fabricated by a facile yet efficient method. The electrochemical properties are evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. The results show a prominent improvement of electrochemical performance of MnO2-based electrodes. For instance, the specific capacitance of SG/CNTs/MnO2 composite is 336.4 F g−1 at the current density of 0.5 A g−1, which is much higher than pure MnO2 (77.1 F g−1) and binary SG/MnO2 (213.0 F g−1). Moreover, SG/CNTs/MnO2 composite shows good cycling stability with 91.3% capacitance retention after 10,000 cycles at a current density of 5 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1999) M. electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

  2. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79

    Article  Google Scholar 

  3. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34(11):4889–4899

    Article  CAS  Google Scholar 

  4. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62

    Article  CAS  PubMed  Google Scholar 

  5. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    Article  CAS  Google Scholar 

  6. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51(12):2901–2912

    Article  CAS  Google Scholar 

  7. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  CAS  Google Scholar 

  8. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652

    Article  CAS  PubMed  Google Scholar 

  9. Zhao X, Sanchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3):839–855

    Article  CAS  PubMed  Google Scholar 

  10. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  11. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):487–493

    Article  CAS  Google Scholar 

  12. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ASC Nano 4:2822–2830

    Article  CAS  Google Scholar 

  13. Ko JM, Kim KM (2009) Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor. Mater Chem Phys 114(2–3):837–841

    Article  CAS  Google Scholar 

  14. Amade R, Jover E, Caglar B, Mutlu T, Bertran E (2011) Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. J Power Sources 196(13):5779–5783

    Article  CAS  Google Scholar 

  15. Zhang G, Ren L, Deng L, Wang J, Kang L, Liu Z-H (2014) Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor. Mater Res Bull 49:577–583

    Article  CAS  Google Scholar 

  16. Zhou H, Yang X, Lv J, Dang Q, Kang L, Lei Z, Yang Z, Hao Z, Liu Z-H (2015) Graphene/MnO2 hybrid film with high capacitive performance. Electrochim Acta 154:300–307

    Article  CAS  Google Scholar 

  17. Zhou W, Han GY, Xiao YM, Chang YZ, Li MY, Zhang YY (2016) Sulfonated graphene synthesized via a green route and its capacitive properties. Chin J Chem 34:98–106

    Article  CAS  Google Scholar 

  18. Zhou JY, Zhao H, Mu XM, Chen JY, Zhang P, Wang YL, Zhang ZX, Pan XJ, Xie EQ (2015) Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core–shell nanostructures for high-performance flexible supercapacitors. Nanoscale 7:14697–14706

    Article  CAS  PubMed  Google Scholar 

  19. EunJoo Yoo JK, Hosono E, Zhou H-s, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  PubMed  Google Scholar 

  20. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949

    Article  CAS  PubMed  Google Scholar 

  21. Xiong CY, Li TH, Dang AL, Zhao TK, Li H, Lv HQ (2016) Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J Power Sources 306:602–610

    Article  CAS  Google Scholar 

  22. Xu MW, Kong LB, Zhou WJ, Li HL (2007) Hydrothermal synthesis and pseudocapacitance properties of r-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  23. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428

    Article  CAS  PubMed  Google Scholar 

  24. Liu C, Gui D, Liu J (2014) Process dependent graphene-wrapped plate-like MnO2 nanospheres for high performance supercapacitor. Chem Phys Lett 614:123–128

    Article  CAS  Google Scholar 

  25. Ma L, Shen X, Ji Z, Zhu G, Zhou H (2014) Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chem Eng J 252:95–103

    Article  CAS  Google Scholar 

  26. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3(43):21380–21423

    Article  CAS  Google Scholar 

  27. Pang M, Long G, Jiang S, Ji Y, Han W, Wang B, Liu X, Xi Y (2015) Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor. Mater Sci Eng B 194:41–47

    Article  CAS  Google Scholar 

  28. Mishra P, Sharma S, Jain R (2017) Carbon electrodes for bio-electricity generation in microbial fuel cells. J Indian Chem Soc 94:1–8

    Google Scholar 

  29. Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28(19):3646–3652

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, He D, Duan J, Wang Y, Li S (2014) Synthesis of MnO2/graphene/carbon nanotube nanostructured ternary composite for supercapacitor electrodes with high rate capability. Mater Chem Phys 147(1–2):141–146

    Article  CAS  Google Scholar 

  31. Jiang H, Dai Y, Hu Y, Chen W, Li C (2014) Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors. ACS Sustain Chem Eng 2(1):70–74.32

    Article  CAS  Google Scholar 

  32. Deng L, Hao Z, Wang J, Zhu G, Kang L, Liu Z-H, Yang Z, Wang Z (2013) Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim Acta 89:191–198

    Article  CAS  Google Scholar 

  33. Nguyen VH, Nguyen TT, Jae-Jin S (2015) Rapid one-step synthesis and electrochemical properties of graphene/carbon nanotubes/MnO2 composites. Synth Met 199:276–279

    Article  CAS  Google Scholar 

  34. Ramezani M, Fathi M, Mahboubi F (2015) Facile synthesis of ternary MnO2-GNS-CNT composites with high rate capability for supercapacitor application. Electrochim Acta 174:345–355

    Article  CAS  Google Scholar 

  35. Mishra P, Jain R (2016) Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int J Hydrog Energy 41:22394–22405

    Article  CAS  Google Scholar 

  36. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

FL acknowledges the support from the National Science Foundation of China (21371105), the Scientific Development Plan of Qingdao (14-2-4-41-jch) and the Natural Science Foundation of Shandong Province (ZR2018LB034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Faqian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xu, H., Cui, M. et al. Synthesis of sulfonated graphene/carbon nanotubes/manganese dioxide composite with high electrochemical properties. Ionics 25, 999–1006 (2019). https://doi.org/10.1007/s11581-018-2767-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2767-0

Keywords

Navigation