, Volume 25, Issue 6, pp 2563–2574 | Cite as

Effects of functional binders on electrochemical performance of graphite anode in potassium-ion batteries

  • Xuan Wu
  • Zheng XingEmail author
  • Yi Hu
  • Ya Zhang
  • Yongwen Sun
  • Zhicheng JuEmail author
  • Jinlong LiuEmail author
  • Quanchao Zhuang
Original Paper


Electrochemical properties of the graphite electrode in potassium-ion batteries (KIBs) depend on the selection of the proper binder. The results in our experiment show that compared with the conventional binders of poly(vinylidene fluoride) (PVDF) and carboxymethylcellulose sodium (CMCNa), the polyacrylate sodium (PAANa) binder can greatly improve the electrochemical performance during the potassiation and depotassiation. Specifically, the initial discharge and charge capacity of the graphite-PAANa electrode are 415.4 and 238.5 mAh g−1, respectively. Even after 50 cycles, it still has a high charge capacity retention of 96.9%. Considering the good swelling property of the PAANa binder, the adhesive and mechanical strength of composite electrodes are obviously enhanced. In addition, the graphite-PAANa electrode can also decrease the electrolyte decomposition on the graphite particle surface and restrain the capacity fading resulted from the repeatedly volume expansion.


Potassium-ion battery Graphite anode Binder Electrochemical performance Diffusion coefficient 


Funding information

The authors would like to thank the financial supports by the Fundamental Research Funds for the Central Universities (2012LWB05).

Supplementary material

11581_2018_2763_MOESM1_ESM.docx (655 kb)
ESM 1 (DOCX 655 kb)


  1. 1.
    Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137:11566–11569. CrossRefGoogle Scholar
  2. 2.
    Kim H, Yoon G, Lim K, Kang K (2016) A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. Chem Commun 52:12618–12621. CrossRefGoogle Scholar
  3. 3.
    Luo W, Wan J, Ozdemir B, Bao W, Chen Y, Dai J, Lin H, Xu Y, Gu F, Barone V, Hu L (2015) Potassium ion batteries with graphitic materials. Nano Lett 15:7671–7677. CrossRefGoogle Scholar
  4. 4.
    Zhao J, Zou X, Zhu Y, Xu Y, Wang C (2016) Electrochemical intercalation of potassium into graphite. Adv Funct Mater 26:8103–8110. CrossRefGoogle Scholar
  5. 5.
    Jian Z, Hwang S, Li Z, Hernandez AS, Wang X, Xing Z, Su D, Ji X (2017) Hard–soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater 27:1700324. CrossRefGoogle Scholar
  6. 6.
    Ju Z, Zhang S, Xing Z, Zhuang Q, Qiang Y, Qian Y (2016) Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl Mater Interfaces 8:20682–20690. CrossRefGoogle Scholar
  7. 7.
    Tai Z, Zhang Q, Liu Y, Liu H, Dou S (2017) Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 123:54–61. CrossRefGoogle Scholar
  8. 8.
    Huang K, Xing Z, Wang L, Wu X, Zhao W, Qi X, Wang H, Ju Z (2018) Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A 6:434–442. CrossRefGoogle Scholar
  9. 9.
    Xie Y, Chen Y, Liu L, Tao P, Fan M, Xu N, Shen X, Yan C (2017) Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv Mater 29:1702268. CrossRefGoogle Scholar
  10. 10.
    An Y, Fei H, Zeng G, Ci L, Xi B, Xiong S, Feng J (2018) Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte. J. Power Sources 378:66–72. CrossRefGoogle Scholar
  11. 11.
    Wu X, Zhao W, Wang H, Qi X, Xing Z, Zhuang Q, Ju Z (2018) Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J Power Sources 378:460–467. CrossRefGoogle Scholar
  12. 12.
    Xing Z, Qi Y, Jian Z, Ji X (2017) Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl Mater Interfaces 9:4343–4351. CrossRefGoogle Scholar
  13. 13.
    Jinlin Y, Zhicheng J, Yong J et al (2018) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104. CrossRefGoogle Scholar
  14. 14.
    Zou X, Xiong P, Zhao J, Hu J, Liu Z, Xu Y (2017) Recent research progress in non-aqueous potassium-ion batteries. Phys Chem Chem Phys 19:26495–26506. CrossRefGoogle Scholar
  15. 15.
    Zhang W, Mao J, Li S, Chen Z, Guo Z (2017) Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 139:3316–3319. CrossRefGoogle Scholar
  16. 16.
    Zhang L, Zhang L, Chai L, Xue P, Hao W, Zheng H (2014) A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J Mater Chem A 2:19036–19045. CrossRefGoogle Scholar
  17. 17.
    Huang J, Wang J, Zhong H, Zhang L (2018) N-cyanoethyl polyethylenimine as a water-soluble binder for LiFePO4 cathode in lithium-ion batteries. J Mater Sci 53:9690–9700. CrossRefGoogle Scholar
  18. 18.
    Komaba S, Hasegawa T, Dahbi M, Kubota K (2015) Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 60:172–175. CrossRefGoogle Scholar
  19. 19.
    Zhu X, Zhang F, Zhang L et al A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv Funct Mater.
  20. 20.
    Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, Wu M, Song X, Yan C, Liu G, Zhang S (2015) Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy 12:178–185. CrossRefGoogle Scholar
  21. 21.
    Shi Y, Ma D, Wang W, Zhang L, Xu X (2017) A supramolecular self-assembly hydrogel binder enables enhanced cycling of SnO2-based anode for high-performance lithium-ion batteries. J Mater Sci 52:3545–3555. CrossRefGoogle Scholar
  22. 22.
    Higgins TM, Park S-H, King PJ, Zhang C(J), McEvoy N, Berner NC, Daly D, Shmeliov A, Khan U, Duesberg G, Nicolosi V, Coleman JN (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10:3702–3713. CrossRefGoogle Scholar
  23. 23.
    Ma T, Zhao Q, Wang J, Pan Z, Chen J (2016) A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew Chem Int Ed 55:6428–6432. CrossRefGoogle Scholar
  24. 24.
    Yoon T, Chapman N, Nguyen CC, Lucht BL (2017) Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes. J Mater Sci 52:3613–3621. CrossRefGoogle Scholar
  25. 25.
    Shin D, Park H, Paik U (2017) Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochem Commun 77:103–106. CrossRefGoogle Scholar
  26. 26.
    Koo B, Kim H, Cho Y, Lee KT, Choi N-S, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed 51:8762–8767. CrossRefGoogle Scholar
  27. 27.
    Kim Y, Park Y, Choi A et al (2013) An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater 25:3045–3049. CrossRefGoogle Scholar
  28. 28.
    Tan AL, Khoo LJ, Alias SS, Mohamad AA (2012) ZnO nanoparticles and poly(acrylic) acid-based polymer gel electrolyte for photo electrochemical cell. J Sol-Gel Sci Technol 64:184–192. CrossRefGoogle Scholar
  29. 29.
    Seo DM, Nguyen CC, Young BT, Heskett DR, Woicik JC, Lucht BL (2015) Characterizing solid electrolyte interphase on Sn anode in lithium ion battery. J Electrochem Soc 162:A7091–A7095. CrossRefGoogle Scholar
  30. 30.
    Han Z-J, Yabuuchi N, Hashimoto S, Sasaki T, Komaba S (2013) Cross-linked poly(acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries. ECS Electrochem Lett 2:A17–A20. CrossRefGoogle Scholar
  31. 31.
    Chiu K-F, Leu H-J, Su S-H, Wu R-Z (2016) Lithiated polyacrylic acid binder to enhance the high rate and pulse charge performances in graphite anodes. ECS Trans 73:289–304. CrossRefGoogle Scholar
  32. 32.
    Nguyen VH, Wang WL, Jin EM, Gu H-B (2013) Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode. Appl Surf Sci 282:444–449. CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Zeng T, Qu C, Lu H, Jia M, Lai Y, Li J (2012) Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochim Acta 80:440–444. CrossRefGoogle Scholar
  34. 34.
    Lim S, Kim S, Ahn KH, Lee SJ (2015) The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries. J Power Sources 299:221–230. CrossRefGoogle Scholar
  35. 35.
    Candelaria SL, Shao Y, Zhou W et al (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220. CrossRefGoogle Scholar
  36. 36.
    Qi X, Huang K, Wu X, Zhao W, Wang H, Zhuang Q, Ju Z (2018) Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131:79–85. CrossRefGoogle Scholar
  37. 37.
    Li W, Hu S, Luo X et al (2017) Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1605820. CrossRefGoogle Scholar
  38. 38.
    Tai Z, Liu Y, Zhang Q, Zhou T, Guo Z, Liu HK, Dou SX (2017) Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries. Green Energy Environ 2:278–284. CrossRefGoogle Scholar
  39. 39.
    Ma G, Huang K, Ma J-S, Ju Z, Xing Z, Q-c Z (2017) Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J Mater Chem A 5:7854–7861. CrossRefGoogle Scholar
  40. 40.
    Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2:3004–3010. CrossRefGoogle Scholar
  41. 41.
    Yang J, Zhou X, Wu D, Zhao X, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Advanced Materials 29:1604108. CrossRefGoogle Scholar
  42. 42.
    Fan L, Lu B (2016) Reactive oxygen-doped 3D interdigital carbonaceous materials for Li and Na ion batteries. Small 12:2783–2791. CrossRefGoogle Scholar
  43. 43.
    Ming J, Ming H, Kwak W-J, Shin C, Zheng J, Sun Y-K (2014) The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. Chem Commun 50:13307–13310. CrossRefGoogle Scholar
  44. 44.
    Park H-K, Kong B-S, Oh E-S (2011) Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem Commun 13:1051–1053. CrossRefGoogle Scholar
  45. 45.
    Chen L, Xie X, Xie J, Wang K, Yang J (2006) Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J Appl Electrochem 36:1099–1104. CrossRefGoogle Scholar
  46. 46.
    Yabuuchi N, Shimomura K, Shimbe Y, Ozeki T, Son JY, Oji H, Katayama Y, Miura T, Komaba S (2011) Graphite-silicon-polyacrylate negative electrodes in ionic liquid electrolyte for safer rechargeable Li-ion batteries. Adv Energy Mater 1:759–765. CrossRefGoogle Scholar
  47. 47.
    Zhang Z, Zeng T, Lai Y, Jia M, Li J (2014) A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. J Power Sources 247:1–8. CrossRefGoogle Scholar
  48. 48.
    Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K (2011) Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem C 115:13487–13495. CrossRefGoogle Scholar
  49. 49.
    Koo B, Kim H, Cho Y, Lee KT, Choi N-S, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem 124:8892–8897. CrossRefGoogle Scholar
  50. 50.
    Cai ZP, Liang Y, Li WS, Xing LD, Liao YH (2009) Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder. J Power Sources 189:547–551. CrossRefGoogle Scholar
  51. 51.
    Gong L, Nguyen MHT, Oh E-S (2013) High polar polyacrylonitrile as a potential binder for negative electrodes in lithium ion batteries. Electrochem Commun 29:45–47. CrossRefGoogle Scholar
  52. 52.
    Komaba S, Ozeki T, Okushi K (2009) Functional interface of polymer modified graphite anode. J Power Sources 189:197–203. CrossRefGoogle Scholar
  53. 53.
    Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89:206–218. CrossRefGoogle Scholar
  54. 54.
    Zhuang Q-C, Li J, Tian L-L (2013) Potassium carbonate as film forming electrolyte additive for lithium-ion batteries. J Power Sources 222:177–183. CrossRefGoogle Scholar
  55. 55.
    Komaba S, Yabuuchi N, Ozeki T, Han ZJ, Shimomura K, Yui H, Katayama Y, Miura T (2012) Comparative study of sodium polyacrylate and poly(vinylidene fluoride) as binders for high capacity Si–graphite composite negative electrodes in Li-ion batteries. J Phys Chem C 116:1380–1389. CrossRefGoogle Scholar
  56. 56.
    Fan X-D, Hsieh Y-L, Krochta JM, Kurth MJ (2001) Study on molecular interaction behavior, and thermal and mechanical properties of polyacrylic acid and lactose blends. J Appl Polym Sci 82:1921–1927. CrossRefGoogle Scholar
  57. 57.
    Liu ZH, Maréchal P, Jérôme R (1998) Blends of poly(vinylidene fluoride) with polyamide 6: interfacial adhesion, morphology and mechanical properties. Polymer 39:1779–1785. CrossRefGoogle Scholar
  58. 58.
    Chang YC, Sohn HJ (2000) Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons. J Electrochem Soc 147:50–58. CrossRefGoogle Scholar
  59. 59.
    Holzapfel M, Martinent A, Alloin F, Le Gorrec B, Yazami R, Montella C (2003) First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy. J Electroanal Chem 546:41–50. CrossRefGoogle Scholar
  60. 60.
    Steinhauer M, Risse S, Wagner N, Friedrich KA (2017) Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy. Electrochim Acta 228:652–658. CrossRefGoogle Scholar
  61. 61.
    Mertens A, Vinke IC, Tempel H, Kungl H, de Haart LGJ, Eichel RA, Granwehr J (2016) Quantitative analysis of time-domain supported electrochemical impedance spectroscopy data of Li-ion batteries: reliable activation energy determination at low frequencies. J Electrochem Soc 163:H521–H527. CrossRefGoogle Scholar
  62. 62.
    Ju Z, Li P, Ma G, Xing Z, Zhuang Q, Qian Y (2018) Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater 11:38–46. CrossRefGoogle Scholar
  63. 63.
    Komaba S, Yabuuchi N, Ozeki T, Okushi K, Yui H, Konno K, Katayama Y, Miura T (2010) Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. J Power Sources 195:6069–6074. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.The Xuzhou City Key Laboratory of High Efficient Energy Storage Technology and EquipmentsChina University of Mining and TechnologyXuzhouChina

Personalised recommendations