Advertisement

Ionics

, Volume 25, Issue 6, pp 2769–2779 | Cite as

Hydrothermal synthesis of Fe-based negative materials for asymmetric supercapacitors with enhanced performance

  • Cheng Shen
  • Rongzhen Li
  • Lijin Yan
  • Ruijuan Bai
  • Yuxin Shi
  • Huatong Guo
  • Can Li
  • Xinjuan Liu
  • Yinyan Gong
  • Lengyuan NiuEmail author
Original Paper
  • 460 Downloads

Abstract

The development of hybrid supercapacitors is limited due to the low specific capacity of traditional carbon-negative materials. Herein, we synthesized two different Fe-based negative electrodes (FeOOH and Fe2O3), and the relationships between structures and capacitive properties of electrodes are systematically studied. Results demonstrate that the Fe2O3 material exhibits higher electrochemical activity than their FeOOH counterparts obtained under the same conditions. Then, a high energy density asymmetric supercapacitor is fabricated by using nanostructured NiCo2S4 and Fe2O3–RGO composite as the positive and negative electrodes, respectively. The assembled device with an extended operation voltage of 1.6 V achieves a maximum energy density of 53.0 Wh kg−1 at a power density of 716 W kg−1 and can still operate at a high power density of 11.5 KW kg−1 with an energy density of 14.2 Wh kg−1, thus holding great potentials for future energy storage devices.

Keywords

Asymmetric supercapacitor Negative materials Iron oxide Nickel cobalt sulfide 

Notes

Funding information

This research was supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ18E030005, the Opening Foundation of State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals (No. SKLAB02015001), and the Natural Science Foundation of Hainan Province (No. 517301).

References

  1. 1.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Tang Y, Li Y, Guo W, Wang J, Li X, Chen S, Mu S, Zhao Y, Gao F (2018) A highly ordered multi-layered hydrogenated TiO2-II phase nanowire array negative electrode for 2.4 V aqueous asymmetric supercapacitors with high energy density and long cycle life. J Mater Chem A 6:623–632CrossRefGoogle Scholar
  4. 4.
    Long JW, Bélanger D, Brousse T, Sugimoto W, Sassin MB, Crosnier O (2011) Asymmetric electrochemical capacitors−stretching the limits of aqueous electrolytes. MRS Bull 36:513–522CrossRefGoogle Scholar
  5. 5.
    Guo W, Li Y, Tang Y, Chen S, Liu Z, Wang L et al (2017) TiO2 nanowire arrays on titanium substrate as a novel binder-free negative electrode for asymmetric supercapacitor. Electrochim Acta 229:197CrossRefGoogle Scholar
  6. 6.
    Wang H, Yi H, Zhu C, Wang X, Jin Fan H (2015) Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13:658–669CrossRefGoogle Scholar
  7. 7.
    Tang Y, Chen T, Yu S, Qiao Y, Mu S, Zhang S, Zhao Y, Hou L, Huang W, Gao F (2015) A highly electronic conductive cobalt nickel sulphide dendrite/quasi-spherical nanocomposite for a supercapacitor electrode with ultrahigh areal specific capacitance. J Power Sources 295:314–322CrossRefGoogle Scholar
  8. 8.
    Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29:1604167CrossRefGoogle Scholar
  9. 9.
    Huang Z, Liu T, Song Y, Li Y, Liu X (2017) Balancing the electrical double layer capacitance and pseudocapacitance of hetero–atom doped carbon. Nanoscale 9:13119–13127CrossRefGoogle Scholar
  10. 10.
    Gao S, Sui Y, Wei F, Qi J, Meng Q, He Y (2018) Facile synthesis of cuboid Ni–MOF for high performance supercapacitors. J Mater Sci.  https://doi.org/10.1007/s10853-018-2005-1
  11. 11.
    Yan Y, Gu P, Zheng S, Zheng M, Pang H, Xue H (2016) Facile synthesis of an accordion–like Ni–MOF superstructure for high–performance flexible supercapacitors. J Mater Chem A 4:19078–19085CrossRefGoogle Scholar
  12. 12.
    Xu D, Chao D, Wang H, Gong Y, Wang R, He B, Hu X, Fan HJ (2018) Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv Energy Mater 8:1702769CrossRefGoogle Scholar
  13. 13.
    Huang Y, Ip W, Lau Y, Sun J, Zeng J, Yeung N, Ng W, Li H, Pei Z, Xue Q, Wang Y, Yu J, Hu H, Zhi C (2017) Weavable, conductive yarn–based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 11:8953–8961CrossRefGoogle Scholar
  14. 14.
    Peng S, Li L, Wu HB, Madhavi S, Lou XW (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172CrossRefGoogle Scholar
  15. 15.
    Chen H, Jiang J, Zhang L, Xia D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257CrossRefGoogle Scholar
  16. 16.
    Yu M, Wang Z, Han Y, Tong Y, Lu X, Yang S (2016) Recent progress in the development of anodes for asymmetric supercapacitors. J Mater Chem A 4:4634–4658CrossRefGoogle Scholar
  17. 17.
    Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7:86–96CrossRefGoogle Scholar
  18. 18.
    Lu X, Zeng Y, Yu M, Zhai T, Liang C, Xie S, Balogun M, Tong Y (2014) Oxygen–deficient hematite nanorods as high–performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 21:3148CrossRefGoogle Scholar
  19. 19.
    Chi K, Zhang Z, Lv Q, Xie C, Xiao J, Xiao F, Wang S (2017) Well–ordered oxygen–deficient CoMoO4 and Fe2O3 nanoplate arrays on 3D graphene foam: toward flexible asymmetric supercapacitors with enhanced capacitive properties. ACS Appl Mater Interfaces 9:6044–6053CrossRefGoogle Scholar
  20. 20.
    Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD (2015) Low–cost flexible supercapacitors with high–energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci Rep 5:12454CrossRefGoogle Scholar
  21. 21.
    Li Y, Xu J, Feng T, Yao Q, Xie J, Xia H (2017) Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high–performance asymmetric supercapacitors. Adv Funct Mater 27:1606728CrossRefGoogle Scholar
  22. 22.
    Li Y, Zhou M, Cui X, Yang Y, Xiao P, Cao L, Zhang Y (2015) Hierarchical structures of nickel, cobalt–based nanosheets and iron oxyhydroxide nanorods arrays for electrochemical capacitors. Electrochim Acta 161:137–143CrossRefGoogle Scholar
  23. 23.
    Chen J, Xu J, Zhou S, Zhao N, Wong C (2016) Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high–performance aqueous asymmetric supercapacitors. Nano Energy 21:145–153CrossRefGoogle Scholar
  24. 24.
    Khani H, Wipf D (2017) Iron oxide nanosheets and pulse–electrodeposited Ni–Co–S nanoflake arrays for high–performance charge storage. ACS Appl Mater Interfaces 9:6967–6978CrossRefGoogle Scholar
  25. 25.
    Shanmugavani A, Selvan RK (2016) Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim Acta 189:283–294CrossRefGoogle Scholar
  26. 26.
    Du P, Wei W, Liu D, Kang H, Liu C, Liu P (2018) Fabrication of hierarchical MoO3–PPy core–shell nanobelts and “worm–like” MWNTs–MnO2 core–shell materials for high–performance asymmetric supercapacitor. J Mater Sci 53:5255–5269CrossRefGoogle Scholar
  27. 27.
    Yang P, Chen Y, Yu X, Qiang P, Wang K, Cai X, Tan S, Liu P, Song J, Mai W (2014) Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high–performance supercapacitors. Nano Energy 10:108–116CrossRefGoogle Scholar
  28. 28.
    Feng J, Ye S, Lu X, Tong Y, Li G (2015) Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high–performance flexible electrochemical energy storage device. ACS Appl Mater Interfaces 7:11444–11451CrossRefGoogle Scholar
  29. 29.
    Perera SD, Rudolph M, Mariano R, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ Jr (2013) Manganese oxide nanorod–graphene/vanadium oxide nanowire–graphene binder–free paper electrodes for metal oxide hybrid supercapacitors. Nano Energy 2:966–975CrossRefGoogle Scholar
  30. 30.
    Singh A, Chandra A (2015) Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci Rep 5:15551CrossRefGoogle Scholar
  31. 31.
    Xu H, Hu X, Yang H, Sun Y, Hu C, Huang Y (2015) Flexible asymmetric micro–supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv Energy Mater 5(6):1401882CrossRefGoogle Scholar
  32. 32.
    Li L, Zhang M, Zhang X, Zhang Z (2017) New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J Power Sources 364:234–241CrossRefGoogle Scholar
  33. 33.
    Kurra N, Wang R, Alshareef HN (2015) All conducting polymer electrodes for asymmetric solid–state supercapacitors. J Mater Chem A 3:7368–7374CrossRefGoogle Scholar
  34. 34.
    Yu X, Yu L, Shen L, Song X, Chen H, Lou XW (2014) General formation of MS (M= Ni, Cu, Mn) box–in–box hollow structures with enhanced pseudocapacitive properties. Adv Funct Mater 24:7440–7446CrossRefGoogle Scholar
  35. 35.
    Xu J, Wang Q, Wang X, Xiang Q, Liang B, Chen D, Shen G (2013) Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@ RuO2 nanosheet arrays on carbon cloth. ACS Nano 7:5453–5462CrossRefGoogle Scholar
  36. 36.
    Li Z, Xin Y, Jia H, Wang Z, Sun J, Zhou Q (2017) Rational design of coaxial MWCNT–COOH@NiCo2S4 hybrid for supercapacitors. 52:9661Google Scholar
  37. 37.
    Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high–performance binder–free electrodes for supercapacitors. ChemPlusChem 79:577–583CrossRefGoogle Scholar
  38. 38.
    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin–like nanostructures for high–rate pseudocapacitors. Nanoscale 5:8879–8883CrossRefGoogle Scholar
  39. 39.
    Sui YW, Zhang YM, Hou PH, Qi JQ, Wei FX, He YZ, Meng QK, Sun Z (2017) Three–dimensional NiCo2S4 nanosheets as high performance electrodes materials for supercapacitors. J Mater Sci 52:7100–7109CrossRefGoogle Scholar
  40. 40.
    Shen L, Yu L, Wu HB, Yu X, Zhang X, Lou XW (2015) Formation of nickel cobalt sulfide ball–in–ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun 6:6694CrossRefGoogle Scholar
  41. 41.
    Han P, Yue Y, Wang X, Ma W, Dong S, Zhang K, Zhang C, Cui G (2012) Graphene nanosheet–titanium nitride nanocomposite for high performance electrochemical capacitors without extra conductive agent addition. J Mater Chem 22:24918CrossRefGoogle Scholar
  42. 42.
    Senthilkumar B, Khan Z, Park S, Kim K, Ko H, Kim Y (2015) Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J Mater Chem A 3:21553–21561CrossRefGoogle Scholar
  43. 43.
    Pang H, Wang S, Shao W, Zhao S, Yan B, Li X, Li S, Chen J, Du W (2013) Few–layered CoHPO4·3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale 5:5752–5757CrossRefGoogle Scholar
  44. 44.
    Yang Y, Ruan G, Xiang C, Wang G, Tour JM (2014) Flexible three–dimensional nanoporous metal–based energy devices. J Am Chem Soc 136:6187–6190CrossRefGoogle Scholar
  45. 45.
    Chen H, Chen S, Fan M, Li C, Chen D, Tian G, Shu K (2015) Bimetallic nickel cobalt selenides: a new kind of electroactive material for high–power energy storage. J Mater Chem A 3:23653–23659CrossRefGoogle Scholar
  46. 46.
    Peng S, Li L, Li C, Tan H, Cai R, Yu H, Mhaisalkar S, Srinivasan M, Ramakrishna S, Yan Q (2013) In situ growth of NiCo2S4 nanosheets on graphene for high–performance supercapacitors. Chem Commun 49:10178–10180CrossRefGoogle Scholar
  47. 47.
    Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high–performance pseudocapacitors. Nano Lett 14:831–838CrossRefGoogle Scholar
  48. 48.
    Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) Mesoporous NiCo2S4 nanoparticles as high–performance electrode materials for supercapacitors. J Power Sources 273:584–590CrossRefGoogle Scholar
  49. 49.
    Peng T, Qian Z, Wang J, Song D, Liu J, Liu Q, Wang P (2014) Construction of mass–controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors. J Mater Chem A 2:19376–19382CrossRefGoogle Scholar
  50. 50.
    Shen L, Wang J, Xu G, Li H, Dou H, Zhang X (2015) NiCo2S4 nanosheets grown on nitrogen–doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5:1400977CrossRefGoogle Scholar
  51. 51.
    Xia C, Li P, Gandi AN, Schwingenschlögl U, Alshareef HN (2015) Is NiCo2S4 really a semiconductor? Chem Mater 27:6482–6485CrossRefGoogle Scholar
  52. 52.
    Niu L, Wang Y, Ruan F, Shen C, Shan S, Xu M, Sun Z, Li C, Liu X, Gong Y (2016) In situ growth of NiCo2S4@Ni3V2O8 on Ni foam as a binder–free electrode for asymmetric supercapacitors. J Mater Chem A 4:5669–5677CrossRefGoogle Scholar
  53. 53.
    Wang H, Guo J, Qing C, Sun D, Wang B, Tang Y (2014) Novel topotactically transformed carbon–CoO–NiO–NiCo2O4 nanosheet hybrid hetero–structured arrays as ultrahigh performance supercapacitors. Chem Commun 50:8697–8700CrossRefGoogle Scholar
  54. 54.
    Zhu T, Zhang G, Hu T, He Z, Lu Y, Wang G, Guo H, Luo J, Lin C, Chen Y (2016) Synthesis of NiCo2S4–based nanostructured electrodes supported on nickel foams with superior electrochemical performance. J Mater Sci 50:1903CrossRefGoogle Scholar
  55. 55.
    Yang X, Niu H, Jiang H, Wang Q, Qu F (2016) A high energy density all−solid−state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes. J Mater Chem A 4:11264–11275CrossRefGoogle Scholar
  56. 56.
    Chen J, Xu J, Zhou S, Zhao N, Wong C (2016) Nitrogen−doped hierarchically porous carbon foam: a free−standing electrode and mechanical support for high−performance supercapacitors. Nano Energy 25:193–202CrossRefGoogle Scholar
  57. 57.
    Tang Y, Chen S, Mu S, Chen T, Qiao Y, Yu S, Gao F (2016) Synthesis of capsule-like porous hollow nanonickel cobalt sulfides via cation exchange based on the Kirkendall effect for high-performance supercapacitors. ACS Appl Mater Interfaces 8:9721–9732CrossRefGoogle Scholar
  58. 58.
    Li Y, Xu J, Feng T, Yao Q, Xie J, Xia H (2017) Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv FunctMater 27:1606728CrossRefGoogle Scholar
  59. 59.
    Cao X, He J, Li H, Kang L, He X, Sun J et al (2018) CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small 14:e1800998CrossRefGoogle Scholar
  60. 60.
    Li X, Wang Z, Guo L, Han D, Li B, Gong Z (2018) Manganese oxide/hierarchical porous carbon nanocomposite from oily sludge for high-performance asymmetric supercapacitors. Electrochim Acta 265:71–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cheng Shen
    • 1
    • 2
  • Rongzhen Li
    • 1
    • 2
  • Lijin Yan
    • 1
    • 2
  • Ruijuan Bai
    • 3
  • Yuxin Shi
    • 1
    • 2
  • Huatong Guo
    • 1
    • 2
  • Can Li
    • 1
    • 2
  • Xinjuan Liu
    • 1
    • 2
  • Yinyan Gong
    • 1
    • 2
  • Lengyuan Niu
    • 1
    • 2
    • 4
    Email author
  1. 1.Institute of Coordination Bond Metrology and Engineering (CBME)China Jiliang UniversityHangzhouPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringChina Jiliang UniversityHangzhouPeople’s Republic of China
  3. 3.Sanya Technology Institute for Quality and Technical Supervision of Hainan ProvinceSanyaPeople’s Republic of China
  4. 4.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China

Personalised recommendations