, Volume 25, Issue 6, pp 2509–2518 | Cite as

Facile synthesis of Na2FexFe1 − x(SO4)2(OH)x material as a cathode for sodium-ion batteries

  • Liang Wang
  • Chenxing Yan
  • Zheng Wang
  • Quanchao ZhuangEmail author
Original Paper


In the present work, a new cathode material of Na2FexFe1 − x(SO4)2(OH)x is synthesized for sodium-ion batteries, and its morphologies and structures are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM results show that the morphology of Na2FexFe1 − x(SO4)2(OH)x is dumbbell-shaped nanorods with the length of about 1.3 μm and the width of 0.3–0.4 μm. The obtained material exhibits the initial reversible capacity that is 106 mAh g−1 and 154 mAh g−1 in the potential range 2.0~4.2 V and 1.5~4.5 V, respectively. After 65 cycles, the reversible capacity decreases to 74 mAh g−1 and 115 mAh g−1 with capacity retention of 70% and 74%, respectively, displaying an excellent cycle performance. Furthermore, the first charge process of Na2FexFe1 − x(SO4)2(OH)x electrode is investigated by electrochemical impedance spectroscopy (EIS) at different potentials, and the spectra exhibit four semicircles and a slightly inclined line that appear successively as the frequency decreases, representing the Na-ion migration in solid electrolyte interface film (SEI film), the electronic properties of materials, charge transfer, solid state diffusion, and phase transition. According to the results of equivalent circuit analysis, the change of kinetic parameters for desodiation process of Na2FexFe1 − x(SO4)2(OH)x electrode as a function of potential is discussed in detail.


Sodium-ion batteries Sulfate compounds Electrochemical impedance spectroscopy 



The authors acknowledge financial supports by the National Natural Science Foundation of China (U1730136) and the Fundamental Research Funds for the Central Universities (2017XKQY062).

Supplementary material

11581_2018_2737_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 28 kb)


  1. 1.
    Wu C, Zhuang Q, Wu Y, Tian L, Cui Y, Zhang X (2013) Facile synthesis of Fe3O4 hollow spheres/carbon nanotubes composites for lithium ion batteries with high-rate capacity and improved long-cycle performance. Mater Lett 113:1–4CrossRefGoogle Scholar
  2. 2.
    Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510CrossRefGoogle Scholar
  3. 3.
    Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2(7):710–721CrossRefGoogle Scholar
  4. 4.
    Zhang G, Wang H, Zhang S, Deng C (2018) Using core–shell interlinked polymer@ C–iodine hollow spheres to synergistically depress polyiodide shuttle and boost kinetics for iodine-based batteries. J Mater Chem A 6(19):9019–9031CrossRefGoogle Scholar
  5. 5.
    Wu B, Wang B, Deng C et al (2011) A highly active carbon-supported PdSn catalyst for formic acid electrooxidation. Appl Catal B Environ 103(1–2):163–168Google Scholar
  6. 6.
    Ma X, Chen H, Ceder G (2011) Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 158(12):A1307–A1312CrossRefGoogle Scholar
  7. 7.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517CrossRefGoogle Scholar
  8. 8.
    Mao J, Luo C, Gao T, Fan X, Wang C (2015) Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries. J Mater Chem A 3(19):10378–10385CrossRefGoogle Scholar
  9. 9.
    Jung YH, Lim CH, Kim DK (2013) Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries. J Mater Chem A 1(37):11350–11354CrossRefGoogle Scholar
  10. 10.
    Gupta A, Mullins CB, Goodenough JB (2013) Na2Ni2TeO6: evaluation as a cathode for sodium battery. J Power Sources 243:817–821CrossRefGoogle Scholar
  11. 11.
    Kim H, Park I, Seo DH, Lee S, Kim SW, Kwon WJ, Park YU, Kim CS, Jeon S, Kang K (2012) New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc 134(25):10369–10372CrossRefGoogle Scholar
  12. 12.
    Wu X, Deng W, Qian J, Cao Y, Ai X, Yang H (2013) Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J Mater Chem A 1(35):10130–10134CrossRefGoogle Scholar
  13. 13.
    Barpanda P (2015) Sulfate chemistry for high-voltage insertion materials: synthetic, structural and electrochemical insights. Isr J Chem 55(5):537–557CrossRefGoogle Scholar
  14. 14.
    Barpanda P, Oyama G, Ling CD et al (2014) Kroehnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries. Cheminform 45(18):1297–1299CrossRefGoogle Scholar
  15. 15.
    Meng Y, Zhang S, Deng C (2015) Superior sodium-lithium intercalation and depressed moisture sensitivity of a hierarchical sandwich-type nanostructure for a graphene-sulfate composite: a case study on Na2Fe(S04)2∙2H2O. J Mater Chem A 3(8):4484–4492CrossRefGoogle Scholar
  16. 16.
    Meng Y, Li Q, Yu T, Zhang S, Deng C (2016) Architecture–property relationships of zero-, one-and two-dimensional carbon matrix incorporated Na2Fe(SO4)2·2H2O/C. CrystEngComm 18(9):1645–1654CrossRefGoogle Scholar
  17. 17.
    Singh P, Shiva K, Celio H, Goodenough JB (2015) Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ Sci 8(10):3000–3005CrossRefGoogle Scholar
  18. 18.
    Reynaud M, Rousse G, Abakumov AM, Sougrati MT, van Tendeloo G, Chotard JN, Tarascon JM (2014) Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2·4H2O. J Mater Chem A 2(8):2671–2680CrossRefGoogle Scholar
  19. 19.
    Barpanda P, Oyama G, Nishimura S et al (2014) A 3.8-V earth-abundant sodium battery electrode. Nat Commun 5:4358CrossRefGoogle Scholar
  20. 20.
    Ming J, Barpanda P, Nishimura S, Okubo M, Yamada A (2015) An alluaudite Na2+2xFe2−x(SO4)3(x= 0.2) derivative phase as insertion host for lithium battery. Electrochem Commun 51:19–22CrossRefGoogle Scholar
  21. 21.
    Oyama G, Nishimura S, Suzuki Y, Okubo M, Yamada A (2015) Off-stoichiometry in alluaudite-type sodium iron sulfate Na2+2xFe2−x(SO4)3 as an advanced sodium battery cathode material. ChemElectroChem 2(7):1019–1023CrossRefGoogle Scholar
  22. 22.
    Dwibedi D, Ling CD, Araujo RB, Chakraborty S, Duraisamy S, Munichandraiah N, Ahuja R, Barpanda P (2016) Ionothermal synthesis of high-voltage alluaudite Na2+2xFe2-x(SO4)3 sodium insertion compound: structural, electronic, and magnetic insights. ACS Appl Mater Interfaces 8(11):6982–6991CrossRefGoogle Scholar
  23. 23.
    Barpanda P, Chotard JN, Recham N et al (2010) Structural, transport, and electrochemical investigation of novel AMSO4F (A= Na, Li; M= Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg Chem 49(16):7401–7413CrossRefGoogle Scholar
  24. 24.
    Dwibedi D, Gond R, Dayamani A, Araujo RB, Chakraborty S, Ahuja R, Barpanda P (2016) Na2.32Co1.84(SO4)3 as a new member of the alluaudite family of high-voltage sodium battery cathodes. Dalton Trans 46(1):55–63CrossRefGoogle Scholar
  25. 25.
    Dwibedi D, Araujo RB, Chakraborty S et al (2015) Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. J Mater Chem A 3(36):18564–18571CrossRefGoogle Scholar
  26. 26.
    Meng Y et al (2016) Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2−x (SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries. J Mater Chem A 4(5):1624–1631CrossRefGoogle Scholar
  27. 27.
    Qiu XY, Zhuang QC, Zhang QQ, Cao R, Ying PZ, Qiang YH, Sun SG (2012) Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Phys Chem Chem Phys 14(8):2617–2630CrossRefGoogle Scholar
  28. 28.
    Zhuang Q C, Sun S G, Xu S D, et al (2012) Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries. INTECH Open Access PublisherGoogle Scholar
  29. 29.
    Du L, Zhuang Q, Wei T et al (2011) Electrochemical impedance spectroscopic studies of the first lithiation of Si/C composite electrode. Acta Chim Sin 69(22):2641–2647Google Scholar
  30. 30.
    Zhuang QC, Wei T, Du LL et al (2010) An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. J Phys Chem C 114(18):8614–8621CrossRefGoogle Scholar
  31. 31.
    Lim JM, Kim D, Lim YG, Park MS, Kim YJ, Cho M, Cho K (2015) The origins and mechanism of phase transformation in bulk Li2 MnO3: first-principles calculations and experimental studies. J Mater Chem A 3(13):7066–7076CrossRefGoogle Scholar
  32. 32.
    Ferguson TR, Bazant MZ (2014) Phase transformation dynamics in porous battery electrodes. Electrochim Acta 146:89–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liang Wang
    • 1
  • Chenxing Yan
    • 1
  • Zheng Wang
    • 1
  • Quanchao Zhuang
    • 1
    Email author
  1. 1.Li-ion Batteries Lab, School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations