, Volume 25, Issue 6, pp 2745–2753 | Cite as

Research on the proton conduction and electrochemical properties of CaZr0.98−xIn0.02AlxO3−α

  • Jinxiao BaoEmail author
  • Zhen Tian
  • Fei Ruan
  • Xiwen Song
  • Shengli An
  • Weiwei Wang
  • Fen Zhou
  • Min Xie
  • Xiang Chen
  • Yonghe Zhang
Original Paper


A solid-state electrolyte CaZr0.98−xIn0.02AlxO3−α (x = 0.002, 0.004, 0.006, and 0.008) was prepared using a solid-state reaction method at the temperatures of 1823 K and 1873 K for 10 h. The structures, micromorphologies, and electrical conductivities of these materials were investigated. The results show that CaZr0.98−xIn0.02AlxO3−α has a pure CaZrO3 perovskite phase structure. The electrical conductivities are approximately 1.86 × 10−8–7.13 × 10−6 S/cm at 1073–1273 K, and they significantly increase with increasing temperature under the same atmospheric conditions and gradually increase with increasing water vapor or oxygen partial pressure. This high-temperature proton conductor material would be used as hydrogen sensors of molten metals.


Perovskite Proton conductor Hydrogen sensor Electrochemical properties 



This work was supported in part by a grant from the National Natural Science Foundation of China (nos. 51464038 and 51864038), the Innovation Fund Project of Inner Mongolia University of Science and Technology (no. 2017YQL01), and the Inner Mongolia Autonomous Region Science and Technology Innovation Guide Reward Fund Project (no. 2017CXYD-7).


  1. 1.
    Iwahara H, Asakura Y, Katahira K (2004) Prospect of hydrogen technology using proton-conducting ceramics. Solid State Ionics 168:299–310CrossRefGoogle Scholar
  2. 2.
    Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science 282:98–100CrossRefGoogle Scholar
  3. 3.
    Bonanos N, Knight SK, Ellis B (1995) Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ionics 79:161–170CrossRefGoogle Scholar
  4. 4.
    Kurita N, Fukatsu N, Ohashi T (1996) The measurement of hydrogen activities in molten copper using an oxide protonic conductor. Metall Mater Trans B Process Metall Mater Process Sci 27:929–935CrossRefGoogle Scholar
  5. 5.
    Yajima T, Iwahara H, Koide K (1991) CaZrO3-type hydrogen and steam sensors: trial fabrication and their characteristics. Sensors Actuators B 5:145–147CrossRefGoogle Scholar
  6. 6.
    Kobayashi K, Yamaguchi S, Iguchi Y (1998) Electrical transport properties of calcium zirconate at high temperature. Solid State Ionics 108:355–362CrossRefGoogle Scholar
  7. 7.
    Iwahara H (1996) Proton conducting ceramics and their applications. Solid State Ionics 86–88:9–15Google Scholar
  8. 8.
    Iwahara H, Esaka T, Uchida H (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3:359–363CrossRefGoogle Scholar
  9. 9.
    Iwahara H, Uchida H, Ono K (1988) Proton conduction in sintered oxides based on BaCeO[sub 3]. J Electrochem Soc 135:529CrossRefGoogle Scholar
  10. 10.
    Shimura T, Esaka K, Matsumoto H (2002) Protonic conduction in Rh-doped AZrO3 (A=Ba, Sr and Ca). Solid State Ionics 149:237–246CrossRefGoogle Scholar
  11. 11.
    Hung I-M, Chiang Y-J, Jang JS-C, Lin J-C, Lee S-W, Chang J-K, His C-S (2015) The proton conduction and hydrogen permeation characteristic of Sr(Ce0.6Zr0.4)0.85Y0.15O3−δ ceramic separation membrane. J Eur Ceram Soc 35:163CrossRefGoogle Scholar
  12. 12.
    Zheng W, Pang W, Meng G (1998) Hydrothermal synthesis of SrZrO3−α (M=Al, Ga, In, x≤0.20) series oxides. Solid State Ionics 108:37–41CrossRefGoogle Scholar
  13. 13.
    Shin S, Huang HH, Ishigame M (1990) Protonic conduction in the single crystals of SrZrO3, and SrCeO3, doped with Y2O3. Solid State Ionics 40:910–913CrossRefGoogle Scholar
  14. 14.
    Hibino T, Mizutani K, Yajima T (1992) Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method. Solid State Ionics 57:303–306CrossRefGoogle Scholar
  15. 15.
    Onishi T, Helgaker T (2012) A theoretical study on hydrogen transport mechanism in SrTio3 perovskite. Int J Quantum Chem 112:201–207CrossRefGoogle Scholar
  16. 16.
    Yajima T, Kazeoka H, Yogo T (1991) Proton conduction in sintered oxides based on CaZrO3. Solid State Ionics 47:271–275CrossRefGoogle Scholar
  17. 17.
    Cano C, Osendi MI, Belmonte M (2006) Effect of the type of flame on the microstructure of CaZrO3 combustion flame sprayed coatings. Surf Coat Technol 201:3307–3313CrossRefGoogle Scholar
  18. 18.
    Scholten MJ, Schoonman J, Miltenburg JC (1993) Synthesis of strontium and barium cerate and their reaction with carbon dioxide. Solid State Ionics 61:83–91CrossRefGoogle Scholar
  19. 19.
    Hung WL, Li Y, Li HZ, Ding YS, Ma BY (2016) Preparation and ionic conduction of CaZr1−xScxO3−α ceramics. Ceram Int 42:13404–13410CrossRefGoogle Scholar
  20. 20.
    Gorelov VP, Balakireva VB, Kleshchev YN (2001) Inorg Mater 37:535–538CrossRefGoogle Scholar
  21. 21.
    Matsuka M, Braddock RD, Matsumoto H (2010) Experimental and theoretical studies of hydrogen permeation for doped strontium cerates. Solid State Ionics 181:1328–1335CrossRefGoogle Scholar
  22. 22.
    Huang WL, Li Y, Ding YS (2017) Preparation and conductive properties of single phase Ba1–xKxCe0.8Y0.2O3–δ perovskite oxides. Electrochim Acta 245:417–423CrossRefGoogle Scholar
  23. 23.
    Ahrens M, Maier J (2006) Thermodynamic properties of BaCeO3 and BaZrO3 at low temperatures. Thermochim Acta 443:189–196CrossRefGoogle Scholar
  24. 24.
    Mitsui A, Miyayama M, Yanagida H (1987) Evaluation of the activation energy for proton conduction in perovskite-type oxides. Solid State Ionics 22:213–217CrossRefGoogle Scholar
  25. 25.
    Kurita N, Fukatsu N, Miyamoto S, Sato F, Nakia H, Irie K, Ohashi T (1996) Metall Mater Trans B Process Metall Mater Process Sci 12:27BGoogle Scholar
  26. 26.
    Bao JX, Wang WW, Ruan F, Zhou F (2016) Electrochemical properties of CaZrO3--based solid electrolyte. J Asian Ceramic Soc 7:791–796Google Scholar
  27. 27.
    Bao J, Ohno H, Kurita N (2011) Proton conduction in Al-doped CaZrO3. Electrochim Acta 56:1062–1068CrossRefGoogle Scholar
  28. 28.
    Bao J, Ohno H, Okuyama Y (2012) Electromotive force of the high-temperature concentration cell using Al-doped CaZrO<sub>3</sub> as the electrolyte. Mater Trans 53:752–759CrossRefGoogle Scholar
  29. 29.
    Ahmed I, Eriksson SG, Ahlberg E (2015) Synthesis and structural characterization of perovskite type proton conducting BaZr1-xInxO3-δ (0.0≤x≤0.75). Solid State Ionics 13:177Google Scholar
  30. 30.
    Woo SN, Jung AL, Joon HL, Young WH, Jeong JK (2016) Effect of oxygen pressure on the p-type conductivity of Ga, P co-doped ZnO thin film grown by pulsed laser deposition. Ceram Int 42:4136–4142CrossRefGoogle Scholar
  31. 31.
    Bao J, Okuyama Y, Shi Z (2012) Properties of electrical conductivity in Y-doped CaZrO<sub>3</sub>. Mater Trans 53:973–979CrossRefGoogle Scholar
  32. 32.
    Li Y, Lu S, Wang C (2012) J Inorg Mater 27:4Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinxiao Bao
    • 1
    Email author
  • Zhen Tian
    • 1
  • Fei Ruan
    • 1
  • Xiwen Song
    • 1
  • Shengli An
    • 1
  • Weiwei Wang
    • 1
  • Fen Zhou
    • 1
  • Min Xie
    • 1
  • Xiang Chen
    • 1
  • Yonghe Zhang
    • 1
  1. 1.School of Materials and MetallurgyInner Mongolia University of Science and TechnologyBaotouChina

Personalised recommendations