Skip to main content
Log in

Protecting lithium metal anode by magnetron sputtering a copper coating

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We propose that the Li anode can be protected by a Cu coating via the technique of magnetron sputtering. Cu has high electrical conductivity, mechanical strength, and chemical stability. Li deposition on Cu coating with a porous structure disperses the local current density and produces a uniform Li-ion flux, greatly suppressing growth of Li dendrites and the layer prevents Li from directly contacting electrolyte while ensures Li-ion transport. The symmetric battery with the Cu-coated Li anode lasting for 140 h presents stable Li deposition/dissolution and improved polarization. The full Li–S battery adopting this modified anode exhibits well-improved cycling stability and capacity retention. It delivers an initial discharge specific capacity of 1148 mAh/g and obtains 526 mAh/g after 300 cycles with high Coulombic efficiency of 99.6% at 0.5 C (1 C = 1675 mAh/g), while the traditional Li–S battery only obtains 490 mAh/g after 200 cycles. Scanning electron microscopy images of the cycled Cu-coated Li anode presents favorable integrity. Electrochemical impedance spectra, cyclic voltammogram, and charge-discharge profiles were investigated to consolidate the function of the Cu coating. This simple and facile strategy provides an approach to protect the metal electrode applied in other metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit 47:2930–2946

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  3. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2011) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  PubMed  Google Scholar 

  4. Manthiram A, Fu Y, Chun SH, Zu C, Su YS (2014) Rechargeable lithium−sulfur batteries. Chem Rev 114:11751–11787

    Article  CAS  PubMed  Google Scholar 

  5. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang JG (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7:513–537

    Article  CAS  Google Scholar 

  6. Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626–632

    Article  CAS  PubMed  Google Scholar 

  7. Lang J, Qi L, Luo Y, Wu H (2017) High performance lithium metal anode: progress and prospects. Energ Stor Mater 7:115–129

    Google Scholar 

  8. Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1:16071

    Article  CAS  Google Scholar 

  9. Zhang K, Lee G, Park M, Li W, Kang Y (2016) Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv Energy Mater 6:1600811

    Article  CAS  Google Scholar 

  10. Yun Q, He YB, Lv W, Zhao Y, Li B, Kang F, Yang QH (2016) Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater 28:6932–6939

    Article  CAS  PubMed  Google Scholar 

  11. Chen XB, Peng HJ, Huang JQ, Wei F, Zhang Q (2014) Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small 10:4257–4263

    CAS  Google Scholar 

  12. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206

    Article  CAS  PubMed  Google Scholar 

  13. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z, Qiu J, Yang Y (2014) Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery. J Mater Chem A 2:11660–11665

    Article  CAS  Google Scholar 

  15. Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2014) Metallic anodes for next generation secondary batteries. Chem Soc Rev 45:9011–9034

    Google Scholar 

  16. Jing G, Wen Z, Wu M, Jin J, Liu Y (2015) Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem Commun 51:59–63

    Article  CAS  Google Scholar 

  17. Ye H, Yin YX, Zhang SF, Shi Y, Liu L, Zhang XX, Wen R, Guo YG, Wan LJ (2017) Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36:411–417

    Article  CAS  Google Scholar 

  18. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Lin D, Yuen PY, Liu K, Xie J, Dauskardt RH, Cui Y (2017) An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 29:1605531

    Article  CAS  Google Scholar 

  20. Chen L, Connell JG, Nie A, Huang Z, Zavadil KR, Klavetter KC, Yuan Y, Sharifi-Asl S, Shahbazian-Yassar R, Libera J, Mane AU, Elam JW (2017) Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J Mater Chem A 5:12297–12309

    Article  CAS  Google Scholar 

  21. Kozen AC, Lin CF, Pearse AJ, Schroeder MA, Han X, Hu L, Lee SB, Rubloff GW, Noked M (2015) Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9:5884–5892

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Wang Q, Jia W, Chen S, Gao P, Li J (2017) Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J Power Sources 342:175–182

    Article  CAS  Google Scholar 

  23. Zhang YJ, Bai WQ, Wang XL, Xia XH, Gu CD, Tu JP (2016) In situ confocal microscopic observation on inhibiting the dendrite formation of a-CNx/Li electrode. J Mater Chem A 4:15597–15604

    Article  CAS  Google Scholar 

  24. Zhang YJ, Liu XY, Bai WQ, Tang H, Shi SJ, Wang XL, Gu CD, Tu JP (2014) Magnetron sputtering amorphous carbon coatings on metallic lithium: towards promising anodes for lithium secondary batteries. J Power Sources 266:43–50

    Article  CAS  Google Scholar 

  25. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y (2014) Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 9:618–623

    Article  CAS  PubMed  Google Scholar 

  27. Kim H, Lee JT, Lee DC, Oschatz M, Cho W, Kaskel S, Yushin G (2013) Enhancing performance of Li–S cells using a Li–Al alloy anode coating. Electrochem Commun 36:38–41

    Article  CAS  Google Scholar 

  28. Yan B, Yang P, Zhao Y, Zhang J, An M (2012) Electrocodeposition of lithium and copper from room temperature ionic liquid 1-ethyl-3-methyllimidazolium bis(trifluoromethylsulfonyl)imide. RSC Adv 2:12926–12931

    Article  CAS  Google Scholar 

  29. Tang Q, Li H, Zuo M, Zhang J, Huang Y, Bai P, Xu J, Zhou K (2016) Optimized assembly of micro−/meso−/macroporous carbon for Li–S batteries. Nano 12:2930–2946

    Google Scholar 

  30. Zhang YJ, Wang W, Tang H, Bai WQ, Ge X, Wang XL, Gu CD, Tu JP (2015) An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J Power Sources 277:304–311

    Article  CAS  Google Scholar 

  31. Vook R (1982) Structure and growth of thin films (vacuum evaporation). Int Metals Rev 27:209–245

    Article  CAS  Google Scholar 

  32. Schnyder B, Lippert T, Kötz R, Wokaun A, Graubner VM, Nuyken O (2003) UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry. Surf Sci 532:1067–1071

    Article  CAS  Google Scholar 

  33. Dan Z, Qin F, Sugawara Y, Muto I, Hara N (2012) Fabrication of nanoporous copper by dealloying amorphous binary Ti–Cu alloys in hydrofluoric acid solutions. Intermetallics 29:14–20

    Article  CAS  Google Scholar 

  34. Xu H, Pang S, Jin Y, Zhang T (2016) General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid. Nano Res 9:2467–2477

    Article  CAS  Google Scholar 

  35. Zhang Z, Wang G, Lai Y, Li J (2016) A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium–sulfur batteries. J Alloy Compound 663:501–506

    Article  CAS  Google Scholar 

  36. Rao M, Song X, Liao H, Cairns EJ (2012) Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim Acta 65:228–233

    Article  CAS  Google Scholar 

  37. Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82

    Article  CAS  Google Scholar 

  38. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    Article  CAS  Google Scholar 

  39. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable LiS batteries. Adv Mater 23:5641–5644

    Article  CAS  PubMed  Google Scholar 

  40. Chen Z, Du XL, He JB, Li F, Wang Y, Li YL, Li B, Xin S (2017) Porous coconut shell carbon offering high retention and deep lithiation of sulfur for lithium–sulfur batteries. Acs Appl Mater Interfaces 9:33855–33862

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support of the “Strategic Priority Research Program” of the Chinese Academy of Science (no. XDA03040000) and the “Student’s Platform for Innovation and Entrepreneurship Training Program” of the Ministry of Education of China (no. 201710359071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heqin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Li, H., Pan, Y. et al. Protecting lithium metal anode by magnetron sputtering a copper coating. Ionics 25, 2525–2533 (2019). https://doi.org/10.1007/s11581-018-2717-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2717-x

Keywords

Navigation