Enhanced photoelectrochemical oxidation of alkali water over cobalt phosphate (Co-Pi) catalyst-modified ZnLaTaON2 photoanodes

Abstract

Zinc lanthanum tantalum oxynitride [ZnLaTaON2] powders were synthesized by conventional solid state reaction. ZnLaTaON2 photoelectrodes were prepared by electrophoretic deposition of ZnLaTaON2 suspension in acetone onto ITO substrate. The photoelectrodes of ZnLaTaON2 were established to reveal photoelectrochemical properties for water oxidation reaction. Moreover, a cobalt phosphate (Co-Pi) was loaded on ZnLaTaON2 photoelectrodes via photodeposition method to enhance the photoelectrochemical water oxidation performances. Photocurrent voltage characteristics of the Co-Pi/ZnLaTaON2 photoelectrodes were enhanced with its effect which is more evidenced at lower water oxidation potentials. A relatively stable photocurrent density of 5 mA/cm2 at 1.5 V vs RHE was attained with the support of electron donor in alkaline phosphate solution. Comparatively, in Co-Pi/ZnLaTaON2 photoelectrodes, approximately threefold enhancement was noticed at 1.8 VRHE in assessment with parent photoelectrode. On the other hand, Co-Pi/ZnLaTaON2 photoelectrodes have been shown as an alternative pathway to improve the photoelectrochemical current gain through the PEC water oxidation reaction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Arunachalam P, Zhang S, Abe T, Komura M, Iyoda T, Nagai K (2016) Weak visible light (∼ mW/cm2) organophotocatalysis for mineralization of amine, thiol and aldehyde by biphasic cobalt phthalocyanine/fullerene nanocomposites. Appl Catal B Environ 193:240–247

    CAS  Article  Google Scholar 

  2. 2.

    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Takata T, Hitoki G, Kondo JN, Hara M, Kobayashi H, Domen K (2007) Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res Chem Intermed 33:13–25

    CAS  Article  Google Scholar 

  4. 4.

    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Gratzel M (2001) Photoelectrochemical cells. Nature 15:338–344

    Article  Google Scholar 

  6. 6.

    Watanabe T, Fujishima A, Honda K (1976) Photoelectrochemical reactions at SrTiO3 single crystal electrode. Bull Chem Soc Jpn 49:355–358

    CAS  Article  Google Scholar 

  7. 7.

    Kudo A (2006) Development of photocatalyst materials for water splitting. Int J Hydrog Energy 31(2):197–202

    CAS  Article  Google Scholar 

  8. 8.

    Melián EP, López CR, Méndez AO, Díaz OG, Suárez MN, Rodríguez JD, Navío J, Hevia DF (2013) Hydrogen production using Pt-loaded TiO2 photocatalysts. Int J Hydrog Energy 38(27):11737–11748

    Article  CAS  Google Scholar 

  9. 9.

    Yuan Y, Zhang X, Liu L, Jiang X, Lv J, Li Z, Zou Z (2008) Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3. Int J Hydrog Energy 33(21):5941–5946

    CAS  Article  Google Scholar 

  10. 10.

    Amano F, Li D, Ohtani B (2010) Fabrication and photoelectrochemical property of tungsten (VI) oxide films with a flake-wall structure. Chem Commun 46(16):2769–2771

    CAS  Article  Google Scholar 

  11. 11.

    Hu Y-S, Kleiman-Shwarsctein A, Stucky GD, McFarland EW (2009) Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem Commun 19:2652–2654

    Article  CAS  Google Scholar 

  12. 12.

    Sayama K, Nomura A, Zou Z, Abe R, Abe Y, Arakawa H (2003) Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem Commun 23:2908–2909

    Article  CAS  Google Scholar 

  13. 13.

    Tang Y, Wang R, Yang Y, Yan D, Xiang X (2016) Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Appl Mater Interfaces 8(30):19446–19455

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Zhang X, Wang R, Li F, An Z, Pu M, Xiang X (2017) Enhancing photoelectrochemical water oxidation efficiency of BiVO4 photoanodes by a hybrid structure of layered double hydroxide and graphene. Ind Eng Chem Res 56(38):10711–10719

    CAS  Article  Google Scholar 

  15. 15.

    He W, Wang R, Zhang L, Zhu J, Xiang X, Li F (2015) Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls. J Mater Chem A 3(35):17977–17982

    CAS  Article  Google Scholar 

  16. 16.

    He W, Wang R, Zhou C, Yang J, Li F, Xiang X (2015) Controlling the structure and photoelectrochemical performance of BiVO4 photoanodes prepared from electrodeposited bismuth precursors: effect of zinc ions as directing agent. Ind Eng Chem Res 54(43):10723–10730

    CAS  Article  Google Scholar 

  17. 17.

    He W, Yang Y, Wang L, Yang J, Xiang X, Yan D, Li F (2015) Photoelectrochemical water oxidation efficiency of a core/shell array photoanode enhanced by a dual suppression strategy. ChemSusChem 8(9):1568–1576

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Xiang X, Fielden J, Rodríguez-Córdoba W, Huang Z, Zhang N, Luo Z, Musaev GM, Lian T, Hill CL (2013) Electron transfer dynamics in semiconductor–chromophore–polyoxometalate catalyst photoanodes. J Phys Chem C 117(2):918–926

    CAS  Article  Google Scholar 

  19. 19.

    Li Y, Zhang L, Xiang X, Yan D, Li F (2014) Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J Mater Chem A 2(33):13250–13258

    CAS  Article  Google Scholar 

  20. 20.

    Tang Y, Fang X, Zhang X, Fernandes G, Yan Y, Yan D, Xiang X, He J (2017) Space-confined earth-abundant bifunctional electrocatalyst for high-efficiency water splitting. ACS Appl Mater Interfaces 9(42):36762–36771

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Priya A, Arunachalam P, Selvi A, Madhavan J, Al-Mayouf AM, Ghanem MA (2018) A low-cost visible light active BiFeWO6/TiO2 nanocomposite with an efficient photocatalytic and photoelectrochemical performance. Opt Mater 81:84–92

    CAS  Article  Google Scholar 

  22. 22.

    Shaddad MN, Cardenas-Morcoso D, Arunachalam P, Garcia-Tecedor M, Ghanem MA, Bisquert J, Al-Amayouf A, Gimenez S (2018) Enhancing the optical absorption and interfacial properties of BiVO4 with Ag3PO4 nanoparticles for efficient water splitting. J Phys Chem C 122(22):11608–11615

    CAS  Article  Google Scholar 

  23. 23.

    Amer MS, Ghanem MA, Al-Mayouf AM, Arunachalam P (2018) Low-symmetry mesoporous titanium dioxide (lsm-TiO2) electrocatalyst for efficient and durable oxygen evolution in aqueous alkali. J Electrochem Soc 165(7):H300–H309

    CAS  Article  Google Scholar 

  24. 24.

    Ghanem MA, Arunachalam P, Amer MS, Al-Mayouf AM (2018) Mesoporous titanium dioxide photoanodes decorated with gold nanoparticles for boosting the photoelectrochemical alkali water oxidation. Mater Chem Phys 213:56–66

    CAS  Article  Google Scholar 

  25. 25.

    Malathi A, Madhavan J, Ashokkumar M, Arunachalam P (2018) A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl Catal A Gen 555:47–74

    CAS  Article  Google Scholar 

  26. 26.

    Scaife D (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25(1):41–54

    CAS  Article  Google Scholar 

  27. 27.

    Abe R, Takata T, Sugihara H, Domen K (2005) The use of TiCl4 treatment to enhance the photocurrent in a TaON photoelectrode under visible light irradiation. Chem Lett 34(8):1162–1163

    CAS  Article  Google Scholar 

  28. 28.

    Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440(7082):295

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Wang X, Maeda K, Lee Y, Domen K (2008) Enhancement of photocatalytic activity of (Zn1+ xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen. Chem Phys Lett 457(1–3):134–136

    CAS  Article  Google Scholar 

  30. 30.

    Arunachalam P, Amer MS, Ghanem MA, Al-Mayouf AM, Zhao D (2017) Activation effect of silver nanoparticles on the photoelectrochemical performance of mesoporous TiO2 nanospheres photoanodes for water oxidation reaction. Int J Hydrog Energy 42(16):11346–11355

    CAS  Article  Google Scholar 

  31. 31.

    Zhang L, Song Y, Feng J, Fang T, Zhong Y, Li Z, Zou Z (2014) Photoelectrochemical water oxidation of LaTaON2 under visible-light irradiation. Int J Hydrog Energy 39(15):7697–7704

    CAS  Article  Google Scholar 

  32. 32.

    Urabe H, Hisatomi T, Minegishi T, Kubota J, Domen K (2015) Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discuss 176:213–223

    Article  CAS  Google Scholar 

  33. 33.

    Maeda K, Higashi M, Siritanaratkul B, Abe R, Domen K (2011) SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J Am Chem Soc 133(32):12334–12337

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Hisatomi T, Katayama C, Moriya Y, Minegishi T, Katayama M, Nishiyama H, Yamada T, Domen K (2013) Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ Sci 6(12):3595–3599

    CAS  Article  Google Scholar 

  35. 35.

    Arunachalam P, Shaddad MN, Ghanem MA, Al-Mayouf AM, Weller MT (2018) Zinc tantalum Oxynitride (ZnTaO2N) photoanode modified with cobalt phosphate layers for the photoelectrochemical oxidation of alkali water. Nanomaterials 8(1):48

    PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Maeda K, Domen K (2012) Water oxidation using a particulate BaZrO3-BaTaO2N solid-solution photocatalyst that operates under a wide range of visible light. Angew Chem Int Ed 51(39):9865–9869

    CAS  Article  Google Scholar 

  37. 37.

    Minegishi T, Nishimura N, Kubota J, Domen K (2013) Photoelectrochemical properties of LaTiO 2 N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem Sci 4(3):1120–1124

    CAS  Article  Google Scholar 

  38. 38.

    Porter SH, Huang Z, Woodward PM (2013) Study of anion order/disorder in RTaN2O (R= La, Ce, Pr) perovskite nitride oxides. Cryst Growth Des 14(1):117–125

    Article  CAS  Google Scholar 

  39. 39.

    Zhang F, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K (2012) Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J Am Chem Soc 134(20):8348–8351

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111(2):1042–1048

    CAS  Article  Google Scholar 

  41. 41.

    Arunachalam P, Ghanem MA, Al-Mayouf AM, Al-shalwi M (2017) Enhanced electrocatalytic performance of mesoporous nickel-cobalt oxide electrode for methanol oxidation in alkaline solution. Mater Lett 196:365–368

    CAS  Article  Google Scholar 

  42. 42.

    Ghanem MA, Al-Mayouf AM, Arunachalam P, Abiti T (2016) Mesoporous cobalt hydroxide prepared using liquid crystal template for efficient oxygen evolution in alkaline media. Electrochim Acta 207:177–186

    CAS  Article  Google Scholar 

  43. 43.

    Theerthagiri J, Thiagarajan K, Senthilkumar B, Khan Z, Senthil RA, Arunachalam P, Madhavan J, Ashokkumar M (2017) Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications. ChemistrySelect 2(1):201–210

    CAS  Article  Google Scholar 

  44. 44.

    Arunachalam P, Al-Mayouf A, Ghanem MA, Shaddad MN, Weller MT (2016) Photoelectrochemical oxidation of water using La (Ta, Nb)O2N modified electrodes. Int J Hydrog Energy 41(27):11644–11652

    CAS  Article  Google Scholar 

  45. 45.

    Rooke J, Weller M (2003) Synthesis and characterisation of perovskite-type oxynitrides. In: Solid state phenomena, Trans Tech Publ, p 417–422

  46. 46.

    Hojamberdiev M, Yubuta K, Vequizo JJM, Yamakata A, Oishi S, Domen K, Teshima K (2015) NH3-assisted flux growth of cube-like BaTaO2N submicron crystals in a completely ionized nonaqueous high-temperature solution and their water splitting activity. Cryst Growth Des 15(9):4663–4671

    CAS  Article  Google Scholar 

  47. 47.

    Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K). J Phys Chem B 105(19):4285–4292

    CAS  Article  Google Scholar 

  48. 48.

    McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) EPR evidence for Co (IV) species produced during water oxidation at neutral pH. J Am Chem Soc 132(20):6882–6883

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Zhong DK, Cornuz M, Sivula K, Grätzel M, Gamelin DR (2011) Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 4(5):1759–1764

    CAS  Article  Google Scholar 

  50. 50.

    McDonald KJ, Choi K-S (2011) Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem Mater 23(7):1686–1693

    CAS  Article  Google Scholar 

  51. 51.

    Walsh D, Sanchez-Ballester NM, Ting VP, Hall SR, Terry LR, Weller MT (2015) Visible light promoted photocatalytic water oxidation: effect of metal oxide catalyst composition and light intensity. Cat Sci Technol 5(10):4760–4764

    CAS  Article  Google Scholar 

  52. 52.

    Butler M, Ginley D (1978) Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J Electrochem Soc 125(2):228–232

    CAS  Article  Google Scholar 

  53. 53.

    Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co−Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132(12):4202–4207

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Li P, Jin Z, Xiao D (2014) A one-step synthesis of Co–P–B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. J Mater Chem A 2(43):18420–18427

    CAS  Article  Google Scholar 

  55. 55.

    Ai G, Mo R, Li H, Zhong J (2015) Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 7(15):6722–6728

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4(12):5028–5034

    CAS  Article  Google Scholar 

Download references

Funding

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group No. RG-1438-087.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prabhakarn Arunachalam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 287 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaddad, M.N., Arunachalam, P., Al-Mayouf, A.M. et al. Enhanced photoelectrochemical oxidation of alkali water over cobalt phosphate (Co-Pi) catalyst-modified ZnLaTaON2 photoanodes. Ionics 25, 737–745 (2019). https://doi.org/10.1007/s11581-018-2688-y

Download citation

Keywords

  • Photoelectrochemistry
  • Cobalt phosphate
  • Water oxidation
  • Electrophoresis