Skip to main content
Log in

Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Additives play critical roles on the performances of electrolytes. Vinyl tris(2-methoxyethoxy) silane (VTMS) was utilized as additive in the ethylene carbonate (EC)/ethyl methyl carbonate (EMC) electrolyte. Scanning electron microscopy (SEM) was used to examine the morphological evolution of electrodes after cycling. The morphology of the SEI film for Si/C electrode was observed by transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectra (EIS) techniques were employed to understand the effect of electrolytes containing VTMS on the formation of the SEI layer. Our experiments reveal that the capacity and cyclability of Si/C anode are improved due to formation of a stable SEI on the anode surface. These behaviors are confirmed by constant current charge–discharge and electrochemical impedance spectra (EIS) study. In particular, 5 wt.% VTMS in EC:DEC (3:7 wt.%) shows the most optimal reversible capacity and best cycle stability. Such a performance can be attributed to the formation of a more flexible SEI containing Li2CO3, LiF, and organosilicone compounds, which can reduce further reduction of electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Liang C, Gao M, Pan H, Liu Y, Yan M (2013) Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J Alloys Compd 575:246–256

    Article  CAS  Google Scholar 

  2. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotech 3:31–35

    Article  CAS  Google Scholar 

  3. Guo Y, Deng H, Sun X, Li X, Zhao J, Wu J, Chu W, Zhang S, Pan H, Zheng X, Wu X, Jin C, Wu C, Xie Y (2017) Modulation of metal and insulator states in 2D ferromagnetic VS2 by van der Waals interaction engineering. Adv. Energy Mater 29:1700715–1700721

    Article  CAS  Google Scholar 

  4. Jiang Y, Song Y, Pan Z, Meng Y, Jiang L, Wu Z, Yang P, Gu Q, Sun D, Hu L (2018) Rapid amorphization in metastable CoSeO3·H2O nanosheets for ultrafast lithiation kinetics. ACS Nano 12:5011–5020

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Y, Wu Z, Jiang L, Pan Z, Yang P, Tian W, Hu L (2018) Freestanding CoSeO3·H2O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale 10:12003–12010

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Quan W, Zhu Z, Yang Y, Liu Q, Ren Y, Zhang X, Xu R, Hong Y, Zhang Z, Amine K, Tang Z, Lu J, Li J (2017) Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nat Commun 18:627–634

    Article  CAS  Google Scholar 

  7. Li H, Huang XJ, Chen LQ, Wu ZG, Yong L (1999) A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem Solid-State Lett 2:547–549

    Article  CAS  Google Scholar 

  8. Xiang K, Wang X, Chen M, Shen Y, Shu H, Yang X (2017) Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode. J Alloys Compd 695:100–105

    Article  CAS  Google Scholar 

  9. Li J, Wang J, Yang J, Ma X, Lu S (2016) Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries. J Alloys Compd 688:1072–1079

    Article  CAS  Google Scholar 

  10. Vijay A, Sethuraman MJCM (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources 195:5062–5066

    Article  CAS  Google Scholar 

  11. Ma RJ, Liu YF, Yang YX, Pu KC, Gao MX, Pan HG (2015) Li-Si-alloy-assisted improvement in the intrinsic cyclability of Mg2Si as an anode material for Li-ion batteries. Acta Mater 98:128–134

    Article  CAS  Google Scholar 

  12. Wang DS, Gao MX, Pan HG, Wang JH, Liu YF (2014) High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J Power Sources 256:190–199

    Article  CAS  Google Scholar 

  13. He Y, Yu X, Wang Y, Li H, Huang X (2011) Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv Mater 23:4938–4941

    Article  CAS  PubMed  Google Scholar 

  14. Ma H, Cheng FY, Chen J, Zhao JZ, Li CS, Tao ZL, Liang J (2007) Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater 19:4070–4076

    Google Scholar 

  15. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu LB, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotech 7:310–315

    Article  CAS  Google Scholar 

  16. Chen HX, Xiao Y, Wang L, Yang Y (2011) Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J Power Sources 196:6657–6662

    Article  CAS  Google Scholar 

  17. Wang J, Wang C, Zhu Y, Wu N, Tian W (2015) Electrochemical stability of optimized Si/C composites anode for lithium ion batteries. Ionics 21:579–585

    Article  CAS  Google Scholar 

  18. Li W, Chen S, Yu J, Fang D, Ren B, Zhang S (2016) In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries. Green Energy Environ 1:91–99

    Article  Google Scholar 

  19. Chew SY, Guo ZP, Wang JZ, Chen J, Munroe P, Ng SH, Zhao L, Liu HK (2007) Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem Commun 9:941–946

    Article  CAS  Google Scholar 

  20. La HS, Park KS, Nahm KS, Jeong KK, Lee YS (2006) Preparation of polypyrrole-coated silicon nanoparticles. Colloids Surf A Physicochem Eng Asp 272:22–26

    Article  CAS  Google Scholar 

  21. Liu WR, Yang M, Wu H (2005) Enhanced cycle life of Si anode for li-ion batteries by using modified elastomeric binder. Electrochem Solid-State Lett 8:A100–A103

    Article  CAS  Google Scholar 

  22. Kim JS, Choi W, Cho KY, Byun D, Lim J, Lee JK (2013) Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244:521–526

    Article  CAS  Google Scholar 

  23. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  PubMed  Google Scholar 

  24. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148:405–416

    Article  CAS  Google Scholar 

  25. NIE MY, LUCH BL (2014) Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J Electrochem Soc 161:A1001–A1006

    Article  CAS  Google Scholar 

  26. Chen LB, Wang K, Xie XH, Xie JY (2006) Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive. Electrochem. Solid State Lett 9:A512–A515

    Article  CAS  Google Scholar 

  27. Choi NS, Yew KH, Lee KY, Sung M, Kim H, Kim SS (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161:1254–1259

    Article  CAS  Google Scholar 

  28. Kim JS, Byun D, Lee JK (2014) Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive. Curr Appl Phys 14:596–602

    Article  Google Scholar 

  29. Kim K, Park I, Ha SY, Kim Y, Woo MH, Jeong MH, Shin WC, Ue M, Hong SY, Choi NS (2017) Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochim Acta 225:358–368

    Article  CAS  Google Scholar 

  30. Wang W, Yang S (2017) Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive. J Alloys Compd 695:3249–3255

    Article  CAS  Google Scholar 

  31. Song SW, Baek SW (2009) Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries. Electrochem Solid State Lett 12:A23–A27

    Article  CAS  Google Scholar 

  32. Han GB, Ryou MH, Cho KY, Lee YM, Park JK (2010) Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode. J Power Sources 195:3709–3714

    Article  CAS  Google Scholar 

  33. Rossi NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58:267–272

    Article  CAS  Google Scholar 

  34. Amine K, Wang Q, Vissers DR, Zhang Z, Rosii NAA, West R (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8:429–433

    Article  CAS  Google Scholar 

  35. Inouse T, Tada S, Morimoto H, Tobishima S (2006) Poly-ether modified siloxanes as electrolyte additives for rechargeable lithium cells. J Power Sources 161:550–559

    Article  CAS  Google Scholar 

  36. Takeuchi T, Noguchi S, Morimoto H, Tobishima S (2010) Carbonate-modified siloxanes as solvents of electrolyte solutions for rechargeable lithium cells. J Power Sources 195:580–587

    Article  CAS  Google Scholar 

  37. Takei Y, Takeno K, Morimoto H, Tobishima S (2013) Effects of nonaqueous electrolyte solutions mixed with carbonate-modified siloxane on charge-discharge performance of negative electrodes for secondary lithium batteries. J Power Sources 228:32–38

    Article  CAS  Google Scholar 

  38. Li J, Zhang J, Zhang XG, Yang CZ, Xu NX, Xia BJ (2010) Study of the storage performance of a Li-ion cell at elevated temperature. Electrochim Acta 55:927–934

    Article  CAS  Google Scholar 

  39. Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Vinyl tris-2-methoxyethoxy silane—a new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Commun 8:523–527

    Article  CAS  Google Scholar 

  40. Aurbach D, Zaban A (1993) General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency. J Electroanal Chem 348:155–179

    Article  CAS  Google Scholar 

  41. Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H (1996) A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate and methyl carbonate mixtures. J Electrochem Soc 143:3809–3820

    Article  CAS  Google Scholar 

  42. Kang SH, Abraham DP, Xiao A, Lucht BL (2008) Investigating the solid electrolyte interphase using binder-free graphite electrodes. J Power Sources 175:526–532

    Article  CAS  Google Scholar 

  43. Fujita K, Oya A, Benoit R, Beguin F (1996) Structure and mechanical properties of methyltrimethoxysilane-treated taeniolite films. J Mater Sci 31:4609–4615

    Article  CAS  Google Scholar 

  44. Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes [J]. J Electrochem Soc 158:A798–A801

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Key Research and Development Program of China (No. 2016YFB0100303), International Cooperation and Exchange of the National Natural Science Foundation of China (No. 51561145020), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09010103), National Natural Science Foundation of China (No. 21706261), Beijing Natural Science Foundation (No. L172045), and the Ford-China University Research Program, National Science Foundation of China (No. 21506197; No. 21646011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L. & Zhang, H. Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. Ionics 24, 3691–3698 (2018). https://doi.org/10.1007/s11581-018-2682-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2682-4

Keywords

Navigation