Skip to main content
Log in

Development and electrical conductivity of PVA/MF-based nanocomposite doped with NiO nanoparticles

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Development of PVA-MF blends encapsulated with NiO nanoparticles to prepare moisture-resistant polymer nanocomposite films. The preparation of PVA-MF blend was carried out by blending of MF resin and prepared PVA solutions in various ratios (2% PVA and different volumes of MF, i.e., 1.3 ml (N1), 2.2 ml (N2), 2.7 ml (N3), 3.6 ml (N4), and 4.4 ml (N5)] to optimize their ratio for nanocomposite preparation. The nanocomposite films were prepared by dispersion of NiO nanoparticles in the different ratio [N3 (0.03), N3 (0.06), N3 (0.09), and N3 (0.1)] in the optimized PVA-MF blend (N3) system. The structure, physicochemical properties, and morphology of a prepared blend and polymer nanocomposites were characterized by Fourier transform infrared (FTIR), ultraviolet-visible (UV-visible) spectroscopy, X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The analysis reveals that the blend and polymer nanocomposite was successfully synthesized. Electrical conductivity of PVA-MF blend (N3) has been dramatically enhanced from 0.0258 ± 0.00129 to 0.3355 ± 0.01678 S/m and reduction in the band gap of nanocomposite from 5.1 to 4.8 eV as compared to blend by doping NiO nanoparticles. The synthesized polymer nanocomposite will be used for the development of new material in electrical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bandara TMWJ, Ekanayake P, Dissanayake MAKL, Albinsson I, Mellander BE (2009) A polymer electrolyte containing ionic liquid for possible applications in photoelectrochemical solar cells. J Solid State Electrochem 14:1221–1226. https://doi.org/10.1007/s10008-009-0951-x

    Article  CAS  Google Scholar 

  2. El Sayed AM, El-Gamal S, Morsi WM, Mohammed G (2015) Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J Mater Sci 50:4717–4728. https://doi.org/10.1007/s10853-015-9023-z

    Article  CAS  Google Scholar 

  3. Bao C, Guo Y, Song L, Lu H, Yuan B, Hu Y (2011) Facile synthesis of poly(vinyl alcohol)/α-titanium phosphate nanocomposite with markedly enhanced properties. Ind Eng Chem Res 50:11109–11116. https://doi.org/10.1021/ie200700t

    Article  CAS  Google Scholar 

  4. Ileperuma O, Dissanayake MAK, Somasundaram S (2002) Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes. Electrochim Acta 47:2801–2807. https://doi.org/10.1016/S0013-4686(02)00166-4

    Article  CAS  Google Scholar 

  5. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326

    Article  CAS  PubMed  Google Scholar 

  6. Gopishetty V, Tokarev I, Minko S (2012) Biocompatible stimuli-responsive hydrogel porous membranes via phase separation of a polyvinyl alcohol and Na-alginate intermolecular complex. J Mater Chem 22:19482. https://doi.org/10.1039/c2jm31778h

    Article  CAS  Google Scholar 

  7. Guzman-Puyol S, Ceseracciu L, Heredia-Guerrero JA, Anyfantis GC, Cingolani R, Athanassiou A, Bayer IS (2015) Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol-cellulose composites. Chem Eng J 277:242–251. https://doi.org/10.1016/j.cej.2015.04.092

    Article  CAS  Google Scholar 

  8. Yusof YM, Illias HA, Kadir MFZ (2014) Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics (Kiel) 20:1235–1245. https://doi.org/10.1007/s11581-014-1096-1

    Article  CAS  Google Scholar 

  9. Jiang Z, Carroll B, Abraham KM (1997) Studies of some poly(vinylidene fluoride) electrolytes. Electrochim Acta 42:2667–2677. https://doi.org/10.1016/S0013-4686(97)00005-4

    Article  CAS  Google Scholar 

  10. Wohnsiedler HP (1953) Polymerization in melamine-formaldehyde molded resins. Ind EngChem. SC 45:2307–2311. https://doi.org/10.1021/ie50526a045

    Article  CAS  Google Scholar 

  11. Wu Y, Liu J, Ma J, Liu Y, Wang Y, Wu D (2016) Ratiometric nanothermometer based on rhodamine dye-incorporated F127-melamine-formaldehyde polymer nanoparticle: preparation, characterization, wide-range temperature sensing, and precise intracellular thermometry. ACS Appl Mater Interfaces 8:14396–14405. https://doi.org/10.1021/acsami.6b03366

    Article  CAS  PubMed  Google Scholar 

  12. Baraka A, Hall PJ, Heslop MJ (2007) Melamine-formaldehyde-NTA chelating gel resin: synthesis, characterization and application for copper(II) ion removal from synthetic wastewater. J Hazard Mater 140:86–94. https://doi.org/10.1016/j.jhazmat.2006.06.051

    Article  CAS  PubMed  Google Scholar 

  13. Yan HW, Wei JL, Yin B, Yang MB (2015) Effect of the surface modification of ammonium polyphosphate on the structure and property of melamine–formaldehyde resin microencapsulated ammonium polyphosphate and polypropylene flame retardant composites. Polym Bull 72:2725–2737. https://doi.org/10.1007/s00289-015-1432-2

    Article  CAS  Google Scholar 

  14. Xu W, Yu C, Zhao X, Xu J, Jiang M (2016) Melamine formaldehyde/polyvinyl alcohol composite fiber: structures and properties controlled by reaction-induced phase separation. J Appl Polym Sci:133. https://doi.org/10.1002/app.42918

  15. Choma J, Jedynak K, Marszewski M, Jaroniec M (2012) Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, NiO nanoparticles, and nickel nitrate. Appl Surf Sci 258:3763–3770. https://doi.org/10.1016/j.apsusc.2011.12.022

    Article  CAS  Google Scholar 

  16. Bahari Molla Mahaleh Y, Sadrnezhaad SK, Hosseini D (2008) NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. J Nanomater:2008. https://doi.org/10.1155/2008/470595

  17. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924. https://doi.org/10.2134/jeq2009.0462

    Article  CAS  PubMed  Google Scholar 

  18. Weidenfeller B, Höfer M, Schilling FR (2004) Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos Part A Appl Sci Manuf 35:423–429. https://doi.org/10.1016/j.compositesa.2003.11.005

    Article  CAS  Google Scholar 

  19. Samzadeh-kermani A, Mirzaee M, Ghaffari-moghaddam M (2016) Polyvinyl alcohol/polyaniline/ZnO nanocomposite : synthesis , characterization and bactericidal property. Adv Biol Chem 6:1–11

  20. Pileni MP (2001) Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv Funtional Mater 11:323–336. https://doi.org/10.1002/1616-3028(200110)11:5<323::AID-ADFM323>3.0.CO;2-J

    Article  CAS  Google Scholar 

  21. Deraz NM, Selim MM, Ramadan M (2009) Processing and properties of nanocrystalline Ni and NiO catalysts. Mater Chem Phys 113:269–275. https://doi.org/10.1016/j.matchemphys.2008.07.021

    Article  CAS  Google Scholar 

  22. Santhoshkumar A, Kavitha HP, Suresh R (2016) Hydrothermal synthesis, characterization and antibacterial activity of NiO nanoparticles. J Adv Chem Sci J Adv Chem Sci 2:230–232

    Google Scholar 

  23. Alzayed NS, Ebothé J, Michel J et al (2014) Influence of the ZnO nanoparticle sizes and morphology on the photoinduced light reflectivity. Phys E Low-Dimensional Syst Nanostructures 60:220–223. https://doi.org/10.1016/j.physe.2014.01.032

    Article  CAS  Google Scholar 

  24. Nancy AC, Suthanthiraraj SA (2017) Effect of Al2O3 nanofiller on the electrical, thermal and structural properties of PEO:PPG based nanocomposite polymer electrolyte. Ionics (Kiel) 23:1439–1449. https://doi.org/10.1007/s11581-017-1976-2

    Article  CAS  Google Scholar 

  25. Padmaraj O, Venkateswarlu M, Satyanarayana N (2013) Effect of ZnO filler concentration on the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application. Ionics (Kiel) 19:1835–1842. https://doi.org/10.1007/s11581-013-0922-1

    Article  CAS  Google Scholar 

  26. Baraka A, Hall PJ, Heslop MJ (2007) Preparation and characterization of melamine-formaldehyde-DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater. React Funct Polym 67:585–600. https://doi.org/10.1016/j.reactfunctpolym.2007.01.015

    Article  CAS  Google Scholar 

  27. Agrawal SL, Rai N, Natarajan TS, Chand N (2013) Electrical characterization of PVA-based nanocomposite electrolyte nanofibre mats doped with a multiwalled carbon nanotube. Ionics (Kiel) 19:145–154. https://doi.org/10.1007/s11581-012-0713-0

    Article  CAS  Google Scholar 

  28. Abdullah OG, Aziz SB, Omer KM, Salih YM (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci Mater Electron 26:5303–5309. https://doi.org/10.1007/s10854-015-3067-3

    Article  CAS  Google Scholar 

  29. Helan V, Prince JJ, Al-Dhabi NA et al (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys 6:712–718. https://doi.org/10.1016/j.rinp.2016.10.005

    Article  Google Scholar 

  30. Das D, Nath BC, Phukon P, Saikia BJ, Kamrupi IR, Dolui SK (2013) Nickel oxide/polypyrrole/silver nanocomposites with core/shell/shell structure: synthesis, characterization and their electrochemical behaviour with antimicrobial activities. Mater Chem Phys 142:61–69. https://doi.org/10.1016/j.matchemphys.2013.06.040

    Article  CAS  Google Scholar 

  31. Merline DJ, Vukusic S, Abdala AA (2013) Melamine formaldehyde: curing studies and reaction mechanism. Polym J 45:413–419. https://doi.org/10.1038/pj.2012.162

    Article  CAS  Google Scholar 

  32. Yu C, Xu W, Zhao X, Xu J, Jiang M (2014) Effects of the reaction degree of melamine-formaldehyde resin on the structures and properties of melamine-formaldehyde/polyvinyl alcohol composite fiber. Fibers Polym 15:1828–1834. https://doi.org/10.1007/s12221-014-1828-x

    Article  CAS  Google Scholar 

  33. Bajia S, Sharma R, Bajia B (2009) Solid-state microwave synthesis of melamine-formaldehyde resin. E-Journal Chem 6:120–124. https://doi.org/10.1155/2009/807851

    Article  CAS  Google Scholar 

  34. Liu A, Medina L, Berglund LA (2017) High-strength nanocomposite aerogels of ternary composition: poly(vinyl alcohol), clay, and cellulose nanofibrils. ACS Appl Mater Interfaces 9:6453–6461. https://doi.org/10.1021/acsami.6b15561

    Article  CAS  PubMed  Google Scholar 

  35. Habiba U, Siddique TA, Joo TC, Salleh A, Ang BC, Afifi AM (2017) Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) by flocculation/adsorption. Carbohydr Polym 157:1568–1576. https://doi.org/10.1016/j.carbpol.2016.11.037

    Article  CAS  PubMed  Google Scholar 

  36. Lv T, Yan H, Cao J, Liang S (2015) Hydrophilic molecularly imprinted resorcinol-formaldehyde-melamine resin prepared in water with excellent molecular recognition in aqueous matrices. Anal Chem 87:11084–11091. https://doi.org/10.1021/acs.analchem.5b03253

    Article  CAS  PubMed  Google Scholar 

  37. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir 28:5834–5844. https://doi.org/10.1021/la300049j

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Wei L, Zhang L, Jiang C, Siu-Wai Kong E, Zhang Y (2012) 5 preparation of high aspect ratio NiO nanowires and their gas sensing devices with fast response and high sensitivity. J Mater Chem 22:8327. https://doi.org/10.1039/c2jm16934g

    Article  CAS  Google Scholar 

  39. Dhandayuthapani B, Mallampati R, Sriramulu D, Dsouza RF, Valiyaveettil S (2014) PVA/gluten hybrid nanofibers for removal of nanoparticles from water. ACS Sustain Chem Eng 2:1014–1021. https://doi.org/10.1021/sc500003k

    Article  CAS  Google Scholar 

  40. Koosha M, Mirzadeh H, Shokrgozar MA, Farokhi M (2015) Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv 5:10479–10487. https://doi.org/10.1039/C4RA13972K

    Article  CAS  Google Scholar 

  41. Farzaneh F, Haghshenas S (2012) Facile synthesis and characterization of nanoporous NiO with folic acid as photodegredation catalyst for Congo red. Mater Sci Appl 3:697–703. https://doi.org/10.4236/msa.2012.310102

    Article  CAS  Google Scholar 

  42. El-Kemary M, Nagy N, El-Mehasseb I (2013) NiO nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752. https://doi.org/10.1016/j.mssp.2013.05.018

    Article  CAS  Google Scholar 

  43. Udagawa A, Fujie T, Kawamoto Y, Saito A, Takeoka S, Asahi T (2016) Interfacial effects on the crystallization and surface properties of poly(l-lactic acid) ultrathin films. Polym J 48:157–161. https://doi.org/10.1038/pj.2015.95

    Article  CAS  Google Scholar 

  44. Rudko GY, Kovalchuk AO, Fediv VI, Ren Q, Chen WM, Buyanova IA, Pozina G (2013) Role of the host polymer matrix in light emission processes in nano-CdS/poly vinyl alcohol composite. Thin Solid Films 543:11–15. https://doi.org/10.1016/j.tsf.2013.04.035

    Article  CAS  Google Scholar 

  45. Elbarbary AM, El-Sawy NM (2017) Radiation synthesis and characterization of polyvinyl alcohol/chitosan/silver nanocomposite membranes: antimicrobial and blood compatibility studies. Polym Bull 74:195–212. https://doi.org/10.1007/s00289-016-1708-1

    Article  CAS  Google Scholar 

  46. Meftah AM, Gharibshahi E, Soltani N, Yunus W, Saion E (2014) Structural, optical and electrical properties of PVA/PANI/nickel nanocomposites synthesized by gamma radiolytic method. Polymers (Basel) 6:2435–2450. https://doi.org/10.3390/polym6092435

    Article  CAS  Google Scholar 

  47. Mondal D, Mollick MMR, Bhowmick B, Maity D, Bain MK, Rana D, Mukhopadhyay A, Dana K, Chattopadhyay D (2013) Effect of poly(vinyl pyrrolidone) on the morphology and physical properties of poly(vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog Nat Sci Mater Int 23:579–587. https://doi.org/10.1016/j.pnsc.2013.11.009

    Article  Google Scholar 

  48. Gu L, Xie W, Bai S, Liu B, Xue S, Li Q, He D (2016) Facile fabrication of binder-free NiO electrodes with high rate capacity for lithium-ion batteries. Appl Surf Sci 368:298–302. https://doi.org/10.1016/j.apsusc.2016.01.270

    Article  CAS  Google Scholar 

  49. Chen Z, Wang J, Yu F, Zhang Z, Gao X (2015) Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A 3:11624–11630. https://doi.org/10.1039/C5TA01852H

    Article  CAS  Google Scholar 

  50. Peppas NA, Tennenhouse D (2004) Semicrystalline poly(vinyl alcohol) films and their blends with poly(acrylic acid) and poly(ethylene glycol) for drug delivery applications. J Drug Deliv Sci Technol 14:291–297. https://doi.org/10.1016/S1773-2247(04)50050-3

    Article  CAS  Google Scholar 

  51. Chandrakala HN, Ramaraj B (2012) Shivakumaraiah, et al. J Mater Sci 47:8076–8084. https://doi.org/10.1007/s10853-012-6701-y

    Article  CAS  Google Scholar 

  52. Hida S, Hori T, Shiga T, Elliott J, Shiomi J (2013) Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int J Heat Mass Transf 67:1024–1029. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Fahmina Zafar is thankful to Dept. of Science & Technology, New Delhi, India for the postdoc fellowship under the women scientists scheme (WOS) for research in Basic/applied science (Ref.no.SR/WOSA/CS-97/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Nishat.

Electronic supplementary material

ESM 1

(DTD 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, S.A., Kareem, A., Mohammad, A. et al. Development and electrical conductivity of PVA/MF-based nanocomposite doped with NiO nanoparticles. Ionics 25, 2183–2193 (2019). https://doi.org/10.1007/s11581-018-2661-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2661-9

Keywords

Navigation