Skip to main content

Advertisement

Log in

The effects of carbon coating on the electrochemical performance of Zn-Al layer double oxides in nickel-zinc secondary cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon-coated Zn-Al layer double oxide (Zn-Al-LDOs) is synthesized by hydrothermal-calcined method and investigated as an anode material for the Ni-Zn cells. The as-obtained products are characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray diffraction (XRD), which prove that carbon-coated Zn-Al-LDOs are well-crystallized and carbon formed on the surface of Zn-Al-LDOs is amorphous. The electrochemical performances of the carbon-coated Zn-Al-LDOs electrode with different carbon content and pure Zn-Al-LDOs electrode are investigated by the cyclic voltammograms (CV), AC electrochemical impedance spectroscopy (EIS), Tafel plot (TAFEL), and galvanostatic charge-discharge (GCD) measurements. Compared with the pure Zn-Al-LDOs electrode, the carbon-coated Zn-Al-LDOs electrode shows better reversibility, higher specific capacity, and more excellent cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mclarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138:645–656

    Article  CAS  Google Scholar 

  2. Wang R, Yang Z, Yang B, Wang T, Chu Z (2014) Superior cycle stability and high rate capability of Zn–Al–In-hydrotalcite as negative electrode materials for Ni–Zn secondary batteries. J Power Sources 251:344–350

    Article  CAS  Google Scholar 

  3. Feng Z, Yang Z, Huang J, Xie X, Zhang Z (2014) Influences of Zn-Sn-Al-hydrotalcite additive on the electrochemical performances of ZnO for zinc-nickel secondary cells. J Electrochem Soc 161:A1981–A1986

    Article  CAS  Google Scholar 

  4. Huang J, Yang Z, Yang B, Wang R, Wang T (2014) Ultrasound assisted polymerization for synthesis of ZnO/Polypyrrole composites for zinc/nickel rechargeable battery. J Power Sources 271:143–151

    Article  CAS  Google Scholar 

  5. Xie X, Yang Z, Feng Z, Zhang Z, Huang J (2015) Electrochemical properties of ZnO added with Zn-Al-hydrotalcites as anode materials for zinc/nickel alkaline secondary batteries. Electrochim Acta 154:308–314

    Article  CAS  Google Scholar 

  6. Einerhand R, Visscher W, Degoeij J, Barendrecht E (1991) Zinc electrode shape change. II. Process and mechanism. J Electrochem Soc 138:7–17

    Article  CAS  Google Scholar 

  7. Jindra J (2000) Sealed Ni–Zn cells, 1996–1998. J Power Sources 88:202–205

    Article  CAS  Google Scholar 

  8. Arise I, Kawai S, Fukunaka Y, McLarnon F (2013) Coupling phenomena between zinc surface morphological variations and ionic mass transfer rate in alkaline solution. J Electrochem Soc 160:D66–D74

    Article  CAS  Google Scholar 

  9. Huang J, Yang Z, Wang R, Zhang Z, Feng Z, Xie X (2015) Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery. J Mater Chem A 3:7429–7436

    Article  CAS  Google Scholar 

  10. McLarnon FR, Cairns EJ (1991) The secondary alkaline zinc electrode. J Electrochem Soc 138:645–656

    Article  CAS  Google Scholar 

  11. Bass K, Mitchell P, Wilcox G, Smith J (1991) Methods for the reduction of shape change and dendritic growth in zinc-based secondary cells. J Power Sources 35:333–351

    Article  CAS  Google Scholar 

  12. Ma M, Tu J, Yuan Y, Wang X, Li K, Mao F, Zeng Z (2008) Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries. J Power Sources 179:395–400

    Article  CAS  Google Scholar 

  13. Long J, Yang Z, Huang J, Zeng X (2017) Self-assembly of exfoliated layered double hydroxide and grapheme nanosheets for electrochemical energy storage in zinc/nickel secondary batteries. J Power Sources 359:111–118

    Article  CAS  Google Scholar 

  14. Zhang Z, Yang Z, Huang J, Feng Z, Xie X (2015) Enhancement of electrochemical performance with Zn-Al-Bi layered hydrotalcites as anode material for Zn/Ni secondary battery. Electrochim Acta 155:61–68

    Article  CAS  Google Scholar 

  15. Wen X, Yang Z, Xie X, Feng Z, Huang J (2015) The effects of element Cu on the electrochemical performances of zinc-aluminum-hydrotalcites in zinc/nickel secondary battery. Electrochim Acta 180:451–459

    Article  CAS  Google Scholar 

  16. Liu Y, Yang Z, Xie X, Huang J, Wen X (2015) Layered double oxides nano-flakes derived from layered double hydroxides: preparation, properties and application in zinc/nickel secondary batteries. Electrochim Acta 185:190–197

    Article  CAS  Google Scholar 

  17. Yan J, Yang Z (2016) Based on the performance of hydrotalcite as anode material for a Zn–Ni secondary cell, a modification: PPY coated Zn–Al–LDH was adopted. RSC Adv 6:85117–85124

    Article  CAS  Google Scholar 

  18. Long J, Yang Z, Zeng X, Huang J (2016) A new class of nanocomposites of Zn–Al–Bi layered double oxides: large reversible capacity and better cycle performance for alkaline secondary batteries. RSC Adv 6:92896–929046

    Article  CAS  Google Scholar 

  19. Liang J, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T (2010) Topochemical synthesis, anion exchange, and exfoliation of Co–Ni layered double hydroxides: a route to positively charged Co–Ni hydroxide nanosheets with tunable composition. Chem Mater 22:371–378

    Article  CAS  Google Scholar 

  20. Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880

    Article  CAS  PubMed  Google Scholar 

  21. Wang C, Wu Y, Jacobs R, Warner J, Williams G, O’Hare D (2011) Reverse micelle synthesis of Co–Al LDHs: control of particle size and magnetic properties. Chem Mater 23:171–180

    Article  CAS  Google Scholar 

  22. Wang L, Liu Y, Chen X, Qin H, Yang Z (2017) Zinc aluminum antimony hydrotalcite as anode materials for Ni-Zn secondary batteries. J Electrochem Soc 164:A3692–A3698

    Article  CAS  Google Scholar 

  23. Fan X, Yang Z, Wen R, Yang B, Long W (2013) The application of Zn–Al-hydrotalcite as a novel anodic material for Ni–Zn secondary cells. J Power Sources 224:80–85

    Article  CAS  Google Scholar 

  24. Yang B, Yang Z, Wang R, Wang T (2013) Layered double hydroxide/carbon nanotubes composite as a high performance anode material for Ni–Zn secondary batteries. Electrochim Acta 111:581–587

    Article  CAS  Google Scholar 

  25. Yang B, Yang Z, Wang R (2014) Facile synthesis of novel two-dimensional silver-coated layered double hydroxide nanosheets as advanced anode material for Ni–Zn secondary batteries. J Power Sources 251:14–19

    Article  CAS  Google Scholar 

  26. Yang B, Yang Z, Wang R, Feng Z (2014) Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries. J Mater Chem A 2:785–791

    Article  CAS  Google Scholar 

  27. Liu Y, Yang Z (2016) Intercalation of sulfate anions into a Zn–Al layered double hydroxide: their synthesis and application in Zn–Ni secondary batteries. RSC Adv 6:68584–68591

    Article  CAS  Google Scholar 

  28. Bontchev R, Liu S, Krumhansl J, Voigt J, Nenoff T (2003) Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)16(A)x(A’)2-x·4H2O (A, A’ = Cl, Br, I, and NO3 , 2≥X≥0) derivatives. Chem Mater 15:3669–3675

    Article  CAS  Google Scholar 

  29. Renuka R, Srinivasan L, Ramamurthy S, Veluchamy A, Venkatakrishnan N (2001) Cyclic voltammetric study of zinc and zinc oxide electrodes in 5.3 M KOH. J Appl Electrochem 31:655–661

    Article  CAS  Google Scholar 

  30. Fan X, Yang Z, Long W, Zhao Z, Yang B (2013) The preparation and electrochemical performance of In(OH)3-coated Zn-Al-hydrotalcite as anode material for Zn–Ni secondary cell. Electrochim Acta 92:365–370

    Article  CAS  Google Scholar 

  31. McBreen J, Gannon E (1985) Bismuth oxide as an additive in pasted zinc electrodes. J Power Sources 15:169–177

    Article  CAS  Google Scholar 

  32. Coates D, Ferreira E, Charkey A (1997) An improved nickel/zinc battery for ventricular assist systems. J Power Sources 65:109–115

    Article  CAS  Google Scholar 

  33. Zhang Z, Yang Z, Wang R, Feng Z, Xie X, Liao Q (2014) Electrochemical performance of ZnO/SnO2 composites as anode materials for Zn/Ni secondary batteries. ElectrochimActa 13:4287–4292

    Google Scholar 

  34. Shivkumar R, Kalaignan G, Vasudevan T (1998) Studies with porous zinc electrodes with additives for secondary alkaline batteries. J Power Sources 75:90–100

    Article  CAS  Google Scholar 

  35. Long W, Yang Z, Fan X, Yang B, Zhao Z, Jing J (2013) The effects of carbon coating on the electrochemical performances of ZnO in Ni–Zn secondary batteries. Electrochim Acta 105:40–46

    Article  CAS  Google Scholar 

  36. Zhao X, Zhang F, Xu S, Evans DG, Duan X (2010) From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product. Chem Mater 22:3933–3942

    Article  CAS  Google Scholar 

  37. Zeng X, Yang Z, Liu F, Long J, Feng Z, Fan M (2017) An in situ recovery method to prepare carbon-coated Zn–Al–hydrotalcite as the anode material for nickel–zinc secondary batteries. RSC Adv 74:4514–44522

    Google Scholar 

  38. Inada M, Enomoto N, Hojo J, Hayashi K (2017) Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization. Adv Powder Technol 28:884–889

    Article  CAS  Google Scholar 

  39. Sevilla M, Fuertes A (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    Article  CAS  Google Scholar 

  40. Sevilla M, Fuertes A (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem 15:4195–4203

    Article  CAS  Google Scholar 

  41. Long J, Yang Z, Zhang Z, Huang J (2017) Sheet-like carbon-coated Zn-Al-bi layered double oxides nanocomposites enabling high performance for rechargeable alkaline batteries. J Electrochem Soc 164:A3068–A3074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 21371180), Doctoral Fund of Ministry of Education of China (20130162110018), and the Science and Technology Project of Changsha City (no. k1303015-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhong Yang.

Electronic supplementary material

ESM 1

(DTD 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Yang, Z., Long, J. et al. The effects of carbon coating on the electrochemical performance of Zn-Al layer double oxides in nickel-zinc secondary cells. Ionics 25, 1223–1233 (2019). https://doi.org/10.1007/s11581-018-2642-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2642-z

Keywords

Navigation