, Volume 24, Issue 10, pp 3291–3297 | Cite as

Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density

  • M. J. S. Costa
  • G. S. Costa
  • A. E. B. Lima
  • G. E. LuzJr
  • E. Longo
  • L. S. CavalcanteEmail author
  • R. S. Santos
Short Communication


In this communication, we report the growth of pure gamma-phase tungsten oxide (γ-WO3) films on a conducting substrate (fluorine-doped tin oxide), followed by heat treatment at 500 °C for 2 h, and finally modification with either silver (Ag0) or platinum (Pt0) metallic nanoparticles. These γ-WO3 thin films can be obtained from a tungsten citrate solution by a drop-coating method, and their surfaces are modified with Ag0 and Pt0 nanoparticles by photoreduction. X-ray diffraction analysis indicates that all the thin films have a monoclinic structure. Field emission-scanning electron microscopy analysis reveals large and fine grains for pure γ-WO3 film and modified WO3 films, respectively, with an average grain size of ~ 48 nm and thickness of ~ 986 nm. Finally, an enhancement in photoelectrochemical performance by a factor of ~ 2.5 is noted to modified γ-WO3 films, which is attributed to superior electron-hole charge recombination lifetime under polychromatic irradiation. It is observed that, even under bias, an exponential reduction in photocurrent intensity is associated with charge recombination instead of mass transport conditions like diffusion.

Graphical abstract


γ-WO3 films Ag0/Pt0 nanoparticles Recombination lifetime Transient photocurrent 


Funding information

This study is financially supported by the Brazilian research financing institutions: CNPq (479644/2012-8 and 304531/2013-8), FAPESP (2013/07296-2), and CAPES.


  1. 1.
    Mao J, Zhang Q, Li P, Zhang L, Zhang W (2018) Geometric architecture design of ternary composites based on dispersive WO3 nanowires for enhanced visible-light-driven activity of refractory pollutant degradation. Chem Eng J 334:2568–2578CrossRefGoogle Scholar
  2. 2.
    Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136(2):586–589CrossRefPubMedGoogle Scholar
  3. 3.
    Ji X, Ma M, Ge R, Ren X, Wang H, Liu J, Liu Z, Asiri AM, Sun X (2017) WO3 nanoarray: an efficient electrochemical oxygen evolution catalyst electrode operating in alkaline solution. Inorg Chem 56(24):14743–14746CrossRefPubMedGoogle Scholar
  4. 4.
    Jeon B, Kim A, Lee Y-A, Seo H, Kim YK (2017) A spontaneous change in the oxidation states of Pd/WO3 toward an active phase during catalytic cycles of CO oxidation. Surf Sci 665:43–50CrossRefGoogle Scholar
  5. 5.
    Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C Photochem Rev 31:1–35CrossRefGoogle Scholar
  6. 6.
    Tang J, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130:13885–13891CrossRefPubMedGoogle Scholar
  7. 7.
    Bucha VR, Chawla AK, Rawal SK (2016) Review on electrochromic property for WO3 thin films using different deposition techniques. Mater Today 3:1429–1437CrossRefGoogle Scholar
  8. 8.
    Lima AEB, Costa MJS, Santos RS, Batista NC, Cavalcante LS, Longo E, Luz GE Jr (2017) Facile preparation of CuWO4 porous films and their photoelectrochemical properties. Electrochim Acta 256:139–145CrossRefGoogle Scholar
  9. 9.
    Nikoofar K, Haghighi M, Lashanizadegan M, Ahmadvand Z (2015) ZnO nanorods: efficient and reusable catalysts for the synthesis of substituted imidazoles in water. J Taibah Univ Sci 9:570–578CrossRefGoogle Scholar
  10. 10.
    Mishra M, Chun D-M (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A Gen 498:126–141CrossRefGoogle Scholar
  11. 11.
    Salje E, Viswanatha K (1975) Physical properties and phase transitions in WO3. Acta Cryst A31:356–359CrossRefGoogle Scholar
  12. 12.
    Salje E (1977) The orthorhombic phase of WO3. Acta Cryst B33:574–577CrossRefGoogle Scholar
  13. 13.
    Souza Filho AG, Filho JM, Freire VN, Ayala AP, Sasaki JM, Freire PTC, Melo FEA, Julião JF, Gomes UU (2001) Phase transition in WO3 microcrystals obtained by sintering process. J Raman Spectrosc 32:695–699CrossRefGoogle Scholar
  14. 14.
    Go GH, Shinde PS, Doh CH, Lee WJ (2016) PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting. Mater Des 90:1005–1009CrossRefGoogle Scholar
  15. 15.
    Umukoro EH, Peleyeju MG, Ngila JC, Arotiba OA (2017) Towards wastewater treatment: photo-assisted electrochemical degradation of nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chem Eng J 369:8–18Google Scholar
  16. 16.
    Shinde PA, Lokhande VC, Chodankar NR, Ji T, Kim JH, Lokhande CD (2016) Enhanced electrochemical performance of monoclinic WO3 thin films with redox additive aqueous electrolyte. J Colloid Interface Sci 483:261–267CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang J, Ma H, Liu Z (2017) Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Appl Catal B Environ 201:84–91CrossRefGoogle Scholar
  18. 18.
    Liu Z, Wu J, Zhang J (2016) Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. Int J Hydrog Energy 41(45):20529–20535CrossRefGoogle Scholar
  19. 19.
    Ding J, Zhang L, Liu Q, Dai WL, Guan G (2017) Synergistic effects of electronic structure of WO3 nanorods with the dominant {001} exposed facets combined with silver size-dependent on the visible-light photocatalytic activity. Appl Catal B Environ 203:335–342CrossRefGoogle Scholar
  20. 20.
    Oliveira HG, Ferreira LH, Bertazzoli R, Longo C (2015) Remediation of 17-α-ethinylestradiol aqueous solution by photocatalysis and electrochemically assisted photocatalysis using TiO2 and TiO2/WO3 electrodes irradiated by a solar simulator. Water Res 72:305–314CrossRefPubMedGoogle Scholar
  21. 21.
    Garcia-Segura S, O’Neal Tugaoen H, Hristovski K, Westerhoff P (2018) Photon flux influence on photoelectrochemical water treatment. Electrochem Commun 87:63–65CrossRefGoogle Scholar
  22. 22.
    Cavalcante LS, Sczancoski JC, Albarici VC, Matos JME, Varela JA (2008) Synthesis, characterization, structural refinement and optical absorption behavior of PbWO4 powders. Mater Sci Eng B 150:18–25CrossRefGoogle Scholar
  23. 23.
    Dholam R, Patel N, Santini A, Miotello A (2010) Efficient indium tin oxide/Cr-doped-TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydrog Energy 35:9581–9590CrossRefGoogle Scholar
  24. 24.
    Spadavecchia F, Ardizzone S, Cappelletti G, Falciola L, Ceotto M, Lotti D (2013) Investigation and optimization of photocurrent transient measurements on nano-TiO2. J Appl Electrochem 43:217–225CrossRefGoogle Scholar
  25. 25.
    S.Tanisaki (1960) Crystal structure of monoclinic tungsten trioxide at room temperature. J Phys Soc Jpn 15(4):573–581CrossRefGoogle Scholar
  26. 26.
    Zheng JY, Song G, Hong J, Thanh KV, Pawar AU, Kim DY, Kim CW, Haider Z, Kang YS (2014) Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst Growth Des 14:6057–6066CrossRefGoogle Scholar
  27. 27.
    Vegard L (1916) IX, The structure of silver crystals. Philos Mag Ser 31(181):83–87CrossRefGoogle Scholar
  28. 28.
    Kahler H (1921) The crystalline structures of sputtered and evaporated metallic films. Phys Rev 18(3):210–217CrossRefGoogle Scholar
  29. 29.
    Qu Y, Gao Y, Kong F, Zhang S, Du L, Yin G (2013) Pt-rGO-TiO2 nanocomposite by UV photoreduction method as promising electrocatalyst for methanol oxidation. Int J Hydrog Energy 38:12310–12317CrossRefGoogle Scholar
  30. 30.
    Yoon H, Mali MG, Kim M, Al-Deyab SS, Yoon SS (2015) Electrostatic spray deposition of transparent tungsten oxide thin-film photoanodes for solar water splitting. Catal Today 260:89–94CrossRefGoogle Scholar
  31. 31.
    Soedergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556CrossRefGoogle Scholar
  32. 32.
    Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68CrossRefGoogle Scholar
  33. 33.
    Valenti M, Dolat D, Biskos G, Schmidt-Ott A, Smith WA (2015) Enhancement of the photoelectrochemical performance of CuWO4 thin films for solar water splitting by plasmonic nanoparticle functionalization. J Phys Chem C 119:2096–2104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. J. S. Costa
    • 1
  • G. S. Costa
    • 1
  • A. E. B. Lima
    • 1
  • G. E. LuzJr
    • 1
  • E. Longo
    • 2
  • L. S. Cavalcante
    • 1
    Email author
  • R. S. Santos
    • 1
  1. 1.PPGQ-GERATECUniversidade Estadual do PiauíTeresinaBrazil
  2. 2.CDMF-Universidade Estadual PaulistaAraraquaraBrazil

Personalised recommendations