, Volume 25, Issue 3, pp 1025–1034 | Cite as

Effects of activated carbon treatment on Li4Ti5O12 anode material synthesis for lithium-ion batteries

  • Achmad SubhanEmail author
  • Ferensa Oemry
  • Siti Nailul Khusna
  • Erna Hastuti
Original Paper


Conventional solid-state reaction method that is widely adopted to synthesize Li4Ti5O12 (LTO) typically generates rutile TiO2 phase at calcination temperature range between 700 and 900 °C in which two competitive reactions between anatase-to-rutile TiO2 and Li2TiO3-to-Li4Ti5O12 formations occur simultaneously. This study investigates the effectiveness of coconut shell-based activated carbon treatment to eliminate the formation of anatase-to-rutile TiO2. X-ray diffraction (XRD) results indicate that mixing LTO precursors with 3, 6, and 10 wt% activated carbon prior to calcination process could reduce the amount of rutile TiO2 phase in LTO down to 6.9, 4.6, and 3.5 wt%, respectively, versus 9.1 wt% in untreated LTO. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements show that LTO pretreated with 10 wt% AC has discharge capacity of 168.35 mAh g−1 and also Li+-ion diffusion rate of 1.2 × 10−13 cm2 s−1. These values are comparably higher than those of untreated LTO that gains lower discharge capacity of 134.93 mAh g−1 and Li+-ion diffusion rate of 6.9 × 10−14 cm2 s−1. This improvement could be attributed to the suppression of anatase-to-rutile TiO2 formation during calcination process.


Lithium-ion battery Li4Ti5O12 Rutile TiO2 Activated carbon Coconut shell 


Funding information

The authors would like to thanks the Ministry of Research Technology and Higher Education of The Republic of Indonesia (Kemenristek Dikti) for financial support to do this research under INSINAS grant with contract no. 04/INS-2/PPK/E/E4/2017.


  1. 1.
    Wen J, Yu Y, Chen C (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2(3):197–212CrossRefGoogle Scholar
  2. 2.
    Nasir M, Tang T, Hou Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 6(17):1600374CrossRefGoogle Scholar
  3. 3.
    An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL III (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76CrossRefGoogle Scholar
  4. 4.
    Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443CrossRefGoogle Scholar
  5. 5.
    Sun X, Radovanovic PV, Cui B (2015) Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J Chem 39:38–63CrossRefGoogle Scholar
  6. 6.
    Huang Q, Yang Z, Mao J (2017) Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material. Ionics 23(4):803–811CrossRefGoogle Scholar
  7. 7.
    Huang Y, Qi Y, Jia D, Wang X, Guo Z, Il Cho W (2012) Synthesis and electrochemical properties of spinel Li4Ti5O12−xClx anode materials for lithium-ion batteries. J Solid State Electrochem 16:2011–2016CrossRefGoogle Scholar
  8. 8.
    Zhao B, Ran R, Liu M, Shao Z (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng R 98:1–71CrossRefGoogle Scholar
  9. 9.
    Tsai P, Hsu W-D, Lin S (2014) Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li-ion batteries. J Electrochem Soc 161(3):439–444CrossRefGoogle Scholar
  10. 10.
    Song K, Seo D-H, Jo MR, Kim Y, Kang K, Kang Y (2014) Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li-ion battery. J Phys Chem Lett 5:1368–1373CrossRefGoogle Scholar
  11. 11.
    Kim J-G, Park M-S, Hwang SM, Heo Y-U, Liao T, Sun Z, Park JH, Kim KJ, Jeong G, Kim Y-J, Kim JH, Dou SX (2014) Zr4+ doping in Li4Ti5O12 anode for lithium-ion batteries: open Li+ diffusion paths through structural imperfection. Chemsuschem 7:1451–1457Google Scholar
  12. 12.
    Shen L, Uchaker E, Zhang X, Cao G (2012) Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium-ion batteries. Adv Mater 24:6502–6506CrossRefGoogle Scholar
  13. 13.
    Yi T, Jiang L, Shu J, Yue C-B, Zhu R-S, Qiao H-B (2010) Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J Phys Chem Solids 71(9):1236–1242CrossRefGoogle Scholar
  14. 14.
    Wang W, Jiang B, Xiong W, Wang Z, Jiao S (2013) A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochim Acta 114:198–204CrossRefGoogle Scholar
  15. 15.
    Song H, Jeong T, Moon YH, Chun H-H, Chung KY, Kim HS, Cho BW, Kim Y-T (2014) Stabilization of oxygen-deficient structure for conducting Li4Ti5O12 by molybdenum doping in a reducing atmosphere. Sci Rep 4:1–8Google Scholar
  16. 16.
    Wang Z, Wang Z, Peng W, Guo H, Li X (2014) An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/ Li4Ti5O12 full-cell. Ceram Int 40(7):10053–10059CrossRefGoogle Scholar
  17. 17.
    Yuan T, Cai R, Ran R, Zhou Y, Shao Z (2010) A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. J Alloys Compd 505(1):367–373CrossRefGoogle Scholar
  18. 18.
    Shen Y, Søndergaard M, Christensen M, Birgisson S, Iversen BB (2014) Solid state formation mechanism of Li4Ti5O12 from an anatase TiO2 source. Chem Mater 26:3679–3686CrossRefGoogle Scholar
  19. 19.
    Shin J-W, Hong C-H, Yoon D-H (2012) Effects of TiO2 starting materials on the solid-state formation of Li4Ti5O12. J Am Ceram Soc 95:1–7CrossRefGoogle Scholar
  20. 20.
    Raj H, Saxena S, Sil A (2017) Improved electrochemical performance of improved electrochemical performance of Li4Ti5O12 by reducing rutile TiO2 phase impurity and particle size. Mater Technol 32(3):196–201CrossRefGoogle Scholar
  21. 21.
    Yuan T, Cai R, Wang K, Ran R, Liu S, Shao Z (2009) Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery. Ceram Int 35:1757–1768CrossRefGoogle Scholar
  22. 22.
    Hao X, Bartlett BM (2013) Li4Ti5O12 nanocrystals synthesized by carbon templating from solution precursors yield high performance thin film Li-ion battery electrodes. Adv Energy Mater 3:753–761CrossRefGoogle Scholar
  23. 23.
    Wang P, Zhang G, Cheng J, You Y, Li Y, Ding C, Gu J-J, Zheng X-S, Zhang C-F, Cao F-F (2017) Facile synthesis of carbon-coated spinel Li4Ti5O12/rutile-TiO2 composites as an improved anode material in full lithium-ion batteries with LiFePO4@N-doped carbon cathode. ACS Appl Mater Interfaces 9(7):6138–6143CrossRefGoogle Scholar
  24. 24.
    Gratuito MKB, Panyathanmaporn T, Chumnanklang R, Sirinuntawittaya N, Dutta A (2008) Production of activated carbon from coconut shell: optimization using response surface methodology. Bioresour Technol 99:4887–4895CrossRefGoogle Scholar
  25. 25.
    Li W, Peng J, Zhang L, Yang K, Xia H, Zhang S, Guo S (2009) Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW. Waste Manag 29(2):756–760CrossRefGoogle Scholar
  26. 26.
    Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crop Prod 28:190–198CrossRefGoogle Scholar
  27. 27.
    Okieimen CO, Ogbeide SE (2009) The dependence on temperature of carbonization and chemical activation on characteristics of granular activated carbon characteristics. Adv Mater Res 62–64:398–403CrossRefGoogle Scholar
  28. 28.
    Mistry BD (2009) A handbook of spectroscopic data chemistry: UV, IR, PMR, 13CNMR and mass spectroscopy. Oxford Book Company, Jaipur, pp 26–63Google Scholar
  29. 29.
    Coates J (2000) Interpretation of infrared spectra: a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry, 1st edn. Willey, Chichester, pp 10815–10837Google Scholar
  30. 30.
    Toraya H (2016) A new method for quantitative phase analysis using X-ray powder diffraction: direct derivation of weight fractions from observed integrated intensities and chemical compositions of individual phases research papers. J Appl Crystallogr 49:1–9CrossRefGoogle Scholar
  31. 31.
    Toraya H (2017) A new method for quantitative phase analysis using X-ray powder diffraction: direct derivation of weight fractions from observed integrated intensities and chemical compositions of individual phases. addenda and errata. J Appl Crystallogr 50:665CrossRefGoogle Scholar
  32. 32.
    Toraya H (2017) Quantitative phase analysis using observed integrated intensities and chemical composition data of individual crystalline phases: quantification of materials with indefinite chemical compositions. J Appl Crystallogr 50:820–829CrossRefGoogle Scholar
  33. 33.
    Toraya H (2018) Direct derivation (DD) of weight fractions of individual crystalline phases from observed intensities and chemical composition data: incorporation of the DD method into the whole-powder-pattern fitting procedure research papers. J Appl Crystallogr 51:446–455CrossRefGoogle Scholar
  34. 34.
    Ramaraghavulu R, Buddhudu S, Kumar GB (2011) Analysis of structural and thermal properties of Li2TiO3 ceramic powders. Ceram Int 37(4):1245–1249CrossRefGoogle Scholar
  35. 35.
    Zhu G-N, Wang C, Xia Y (2011) A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries service. J Am Chem Soc 158(2):A102–A109Google Scholar
  36. 36.
    Jung H-G, Myung S-T, Yoon CS, Son S-B, Oh KH, Amine K, Scrosati B, Sun Y-K (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci 4:1345–1351CrossRefGoogle Scholar
  37. 37.
    Rahman MM, Wang J, Hassan MF, Wexler D, Liu HK (2011) Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: a nanocomposite anode material for Li-ion batteries. Adv Energy Mater 1:212–220CrossRefGoogle Scholar
  38. 38.
    Guerfi A, Sevigny S, Lagace M, Hovington P, Kinoshita K, Zaghib K (2003) Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J Power Sources 119–121:88–94CrossRefGoogle Scholar
  39. 39.
    Shenouda AY, Murali KR (2008) Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries. J Power Sources 176:332–339CrossRefGoogle Scholar
  40. 40.
    Shenouda AY, Liu HK (2009) Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode. J Alloys Compd 477:498–503CrossRefGoogle Scholar
  41. 41.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  42. 42.
    Kanamura K, Yuasa K, Takehara Z (1987) Diffusion of lithium in the TiO2 cathode of a lithium. J Power Sources 20:127–134Google Scholar
  43. 43.
    Zhu T, Gao S (2014) The stability, electronic structure, and optical property of TiO2 polymorphs. J Phys Chem C 118:11385–11396CrossRefGoogle Scholar
  44. 44.
    Wu K, Yang J, Qiu X, Xu J, Zhang Q, Jin J (2013) Study of spinel Li4Ti5O12 electrode reaction mechanism by electrochemical impedance spectroscopy. Electrochim Acta 108:841–851CrossRefGoogle Scholar
  45. 45.
    Schmidt W, Bottke P, Sternad M, Gollob P, Hennige V, Wilkening M (2015) Small change—great effect: steep increase of Li-ion dynamics in Li4Ti5O12 at the early stages of chemical Li insertion. Chem Mater 27(5):1740–1750CrossRefGoogle Scholar
  46. 46.
    Bach S, Pereira-ramos JP, Willman P (2010) Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy. Electrochim Acta 55:4952–4959CrossRefGoogle Scholar
  47. 47.
    Macklin WJ, Neat RJ (1992) Performance of titanium dioxide-based cathodes in a lithium polymer electrolyte cell. Solid State Ionics 53–56:694–700CrossRefGoogle Scholar
  48. 48.
    Koudriachova MV, Harrison NM, De Leeuw SW (2001) Effect of diffusion on lithium intercalation in titanium dioxide. Phys Rev Lett 86(7):1275–1278CrossRefGoogle Scholar
  49. 49.
    Koudriachova MV, Harrison NM, De Leeuw SW (2003) Diffusion of Li-ions in rutile. An ab initio study. Solid State Ionics 157:35–38CrossRefGoogle Scholar
  50. 50.
    Baudrin E, Cassaignon S, Koelsch M, Jolivet J-P, Dupont L, Tarascon J-M (2007) Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem Commun 9:337–342CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Achmad Subhan
    • 1
    Email author
  • Ferensa Oemry
    • 1
  • Siti Nailul Khusna
    • 2
  • Erna Hastuti
    • 2
  1. 1.Research Center for Physics, Indonesian Institute for Sciences (LIPI)Komplek PuspiptekTangerang SelatanIndonesia
  2. 2.Department of PhysicsUIN Maulana Malik IbrahimMalangIndonesia

Personalised recommendations