Skip to main content

Advertisement

Log in

Poly (naphthol green B) modified carbon paste electrode for the analysis of paracetamol and norepinephrine

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A stable modified carbon paste electrode based on the poly (naphthol green B) film was prepared by electrochemical polymerization method using cyclic voltammetry. The poly (naphthol green B) modified carbon paste electrode showed excellent high electrocatalytic activity towards the paracetamol (PA) and norepinephrine (NE) oxidation, with significant enhancement of the peak currents in neutral pH (7.0) phosphate buffer solution (0.2 M PBS), at the sweep rate 100 mV/s. The sweep rate and pH (6.2 to 7.8) effects on the voltammograms of PA and NE were studied. The lower limit of detection of PA and NE was found to be 1.6 and 2.0 μM, respectively. The simultaneous determination of PA and NE was investigated by cyclic voltammetry (CV). The peak to peak separation of PA and NE was about 173 mV. The interference study was carried out by differential pulse voltammetry (DPV). The modified electrode showed good sensor for the determination of PA and NE. This method was used for the determination of real sample analysis of PA in commercial tablet and NE in injection sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Khaskheli AR, Fischer J, Barek J, Vyskocil V, Sirajuddin, Bhanger MI (2013) Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite–polystyrene composite film modified. Electrochim Acta 101:238–242

    Article  CAS  Google Scholar 

  2. Fogg AG, Sausins PJ, Smithson JR (1970) The determination of paracetarnol and aspirin in mixtures by nonaqueous potentiometric titrimetry or by ultraviolet spectrophotometry. Anal Chim Acta 49:342–345

    Article  CAS  PubMed  Google Scholar 

  3. Boopathi M, Won MS, Shim YB (2004) A sensor for acetaminophen in a blood medium using a Cu (II)-conducting polymer complex modified electrode. Anal Chim Acta 512:191–197

    Article  CAS  Google Scholar 

  4. Wan Q, Wang X, Yu F, Wang X, Yang N (2009) Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen. J Appl Electrochem 39:1145

    Article  CAS  Google Scholar 

  5. Veera Manohara Reddy Y, Bathinapatla, Sravani, Fernandes DM, Madhuria CH, Subramanyam Sarmab L, Madhavia G (2018) Facile one pot synthesis of bimetallic Pd-Ag/reduced graphene oxide nanocomposite as an electrochemical sensor for sensitive detection of antihypotensive drug. Colloids Surf A 546:293–300

    Article  CAS  Google Scholar 

  6. Lourenc BC, Medeiros RA, Filho RCR, Mazo LH, Filho OF (2009) Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 78:748–752

    Article  CAS  Google Scholar 

  7. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  PubMed  Google Scholar 

  8. Sun D, Zhang H (2007) Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film. Microchim Acta 158:131–136

    Article  CAS  Google Scholar 

  9. Jain AK, Gupta VK, Singh LP, Raisoni JR (2006) A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors. Electrochim Acta 51:2547–2553

    Article  CAS  Google Scholar 

  10. Veera Manohara Reddy Y, Bathinapatla, Sravani, ŁuczakϮ T, Osińska M, Maseed H, Ragavendra P, Subramanyam Sarma L, Srikanth LVVSS, Madhavi G (2018) An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. New J Chem 42:3137–3146

    Article  CAS  Google Scholar 

  11. Voet D, Voet JG (1995) Biochemistry, 2nd edn. John Wiley and Sons, New York, pp 1361

    Google Scholar 

  12. Cole SW, Korin YD, Fahey JL, Zack JA (1998) Norepinephrine accelerates HIV replication via protein kinase A-dependent effects. J Immunol 161:610–616

    CAS  PubMed  Google Scholar 

  13. Kuhlenbeck DL, O’Neill TP, Mack CE, Hoke SH, Wehmeyer KR (2000) Determination of norepinephrine in small volume plasma samples by stable-isotope dilution gas chromatography–tandem mass spectrometry with negative ion chemical ionization. J Chromatogr B 738:319–330

    Article  CAS  Google Scholar 

  14. Lin Z, Wu X, Lin X, Xie Z (2007) End-column chemiluminescence detection for pressurized capillary electrochromatographic analysis of norepinephrine and epinephrine. J Chromatogr A 1170:118–121

    Article  CAS  PubMed  Google Scholar 

  15. Zhu M, Huang XM, Li J, Shen HX (1997) Perioxidase-based spectrometric methods for the determination of norepinephrine, epinephrine, dopamine and levodopa. Anal Chim Acta 357:261–267

    Article  CAS  Google Scholar 

  16. Nalewajko E, Wiszowata A, Kojło A (2007) Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection. J Pharm Biomed Anal 43:1673–1681

    Article  CAS  PubMed  Google Scholar 

  17. Beitollahia H, Sheikhshoaie I (2011) Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode. J Electroanal Chem 661:336–342

    Article  CAS  Google Scholar 

  18. Taheri AR, Mohadesi A, Afzali D, Karimi-Maleh H, Mahmoudi- Moghaddam H, Zamani H, Rezayati-Zad Z (2011) Simultaneous voltammetric determination of norepinephrine and folic acid at the surface of modified carbon nanotube paste electrode. Int J Electrochem Sci 6:171–180

    CAS  Google Scholar 

  19. Beitollahi H, Sheikhshoaie I (2011) Electrocatalytic oxidation and determination of epinephrinein the presence of uric acid and folic acid at multiwalledcarbon nanotubes/molybdenum(VI) complex modified carbon paste electrode. AnalMethods 3:1810–1814

    CAS  Google Scholar 

  20. Mazloum-Ardakania M, Beitollahi H, Sheikh-Mohseni MA, Naeimi H, Taghavinia N (2010) Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophene and folic acid. Appl Catal A:Gen 378:195–201

    Article  CAS  Google Scholar 

  21. Akhgar MR, Beitollahi H, Salari M, Karimi-Maleh H, Zamani H (2012) Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode. Anal Methods 4:259–264

    Article  CAS  Google Scholar 

  22. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem 80:9848–9851

    Article  CAS  PubMed  Google Scholar 

  23. Lee TY, Shim YB (2001) Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer. Anal Chem 73:5629–5632

    Article  CAS  PubMed  Google Scholar 

  24. Rahman MA, Won MS, Shim YB (2003) Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal Chem 75:1123–1129

    Article  CAS  PubMed  Google Scholar 

  25. Won MS, Rahman MA, Kwon NH, Shankaran DR, Shim YB (2005) Square-wave voltammetric detection of dopamine at a copper-(3-mercaptopropyl) trimethoxy silane complex modified electrode. Electroanalysis 17:2231–2238

    Article  CAS  Google Scholar 

  26. Naveen MH, Gurudatt NG, Noh HB, Shim YB (2016) Dealloyed Au Ni dendrite anchored on a functionalized conducting polymer for improved catalytic oxygen reduction and hydrogen peroxide sensing in living cells. Adv Funct Mater 26:1590–1601

    Article  CAS  Google Scholar 

  27. Naveen MH, Gurudatt NG, Shim YB (2017) Applications of conducting polymer composites to electrochemical sensors: a review. Appl Mater Today 9:419–433

    Article  Google Scholar 

  28. Gurudatt NG, Naveen MH, Ban C, Shim YB (2016) Enhanced electrochemical sensing of leukemia cells using drug/lipid coimmobilized on the conducting polymer layer. Biosens Bioelectron 86:33–40

    Article  CAS  PubMed  Google Scholar 

  29. Thomas T, Mascarenhas RJ, Kumara Swamy BE (2012) Poly (rhodamine B) modified carbon paste electrode for the selective detection of dopamine. J Mol Liq 174:70–75

    Article  CAS  Google Scholar 

  30. Veera Manohara Reddy Y, Prabhakara Rao V, Vijaya Bhaskar Reddy A, Lavanya M, Venu M, Lavanya M, Madhavi G (2015) Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode. Mater Sci Eng C 57:378–386

    Article  CAS  Google Scholar 

  31. Cai CX, Xue KH (1998) Electrochemical characterization of electropolymerized film of naphthol green B and its electrocatalytic activity toward NADH oxidation. Microchem J 58:197–208

    Article  CAS  Google Scholar 

  32. Chitravathi S, Kumara Swamy BE, Mamatha GP, Sherigara BS (2012) Electrochemical behavior of poly (naphthol green B)-film modified carbon paste electrode and its application for the determination of dopamine and uric acid. J Electro anal Chem 667:66–75

    Article  CAS  Google Scholar 

  33. Kuskur CM, Kumara Swamy BE, Jayadevappa H (2017) Poly (naphthol green B) modified carbon paste electrode sensor for catechol and hydroquinone. J Electro anal Chem 804:99–106

    Article  CAS  Google Scholar 

  34. Hong Y, Yuanyuan S, Xinhua L, Yuhai T, Liying H (2007) Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim Acta 52:6165

    Article  CAS  Google Scholar 

  35. Chitravathi S, Kumara Swamy BE, Mamatha GP, Sherigara BS (2011) Simultaneous electrochemical determination of dopamine and ascorbic acid using poly (L-serine) modified carbon paste electrode. J Mol Liq 160:193–199

    Article  CAS  Google Scholar 

  36. Chandra U, Kumara Swamy BE, Gilbert O, Sherigara BS (2010) Voltammetric resolution of dopamine in the presence of ascorbic acid and uric acid at poly (calmagite) film coated carbon paste electrode. Electrochim Acta 55:7166–7174

    Article  CAS  Google Scholar 

  37. Shankar SS, Kumara Swamy BE, Mahanthesha KR, Vishwanatha CC, Kumar M (2013) Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid by TTAB modified carbon paste electrode. Anal Bioanal Electrochem 5:555–573

    CAS  Google Scholar 

  38. Kumar M, Kumara Swamy BE, Chandra U, Gebisa A (2017) WCo3O4/CuO composite nanopowder/sodium dodecyl sulphate modified carbon paste electrode based voltammetric sensors for detection of dopamine. Int J Nanotechnol 14:930–944

    Article  CAS  Google Scholar 

  39. Kumar M, Kumara Swamy BE, Mohammed Asif MH, Viswanath CC (2017) Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine. Appl Surf Sci 399:411–419

    Article  CAS  Google Scholar 

  40. Goyal RN, Singh SP (2006) Voltammetric determination of paracetamol at C-60-modified glassy carbon electrode. Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  41. Ensafi AA, Karimi-Maleh H, Mallakpour S, Hatami M (2011) Determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotube paste electrode. Sensors Actuators B Chem 155:464–472

    Article  CAS  Google Scholar 

  42. Pournaghi-Azar MH, Saadatirada A (2010) Determination of paracetamol,ascorbic acid and codeine by differential pulse voltammetry on the aluminum electrode modified by thin layer of palladium. Electroanalysis 22:1592–1598

    CAS  Google Scholar 

  43. Rodriguez MC, Rivas GA (2002) Glassy carbon paste electrodes modified with polyphenol oxidase analytical applications. Anal Chim Acta 459:43–51

    Article  CAS  Google Scholar 

  44. Wangfuengkanagul N, Chailapakul O (2002) Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J Pharm Biomed Anal 28:841–847

    Article  CAS  PubMed  Google Scholar 

  45. Wang Q, Li N (2001) Electrocatalytic response of norepinephrine at a thiolactic acid self-assembled gold electrode. Talanta 55:1219–1225

    Article  CAS  PubMed  Google Scholar 

  46. Wei M, Li M, Li N, Gu Z, Duan X (2002) Electrocatalytic oxidation of norepinephrine at a reduced C60-[dimethyl-(β-cyclodextrin)]2 and Nafion chemically modified electrode. Electrochim Acta 47:2673–2678

    Article  CAS  Google Scholar 

  47. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis 14:225–230

    Article  CAS  Google Scholar 

  48. Zhao H, Zhang Y, Yuan Z (2002) Electrochemical behavior of norepinephrine at poly (2,4,6-trimethylpyridine) modified glassy carbon electrode. Electroanalysis 14:445–448

    Article  CAS  Google Scholar 

  49. Beitollahi H, Mohadesi A, Mahani SK, Karimi-Maleh H, Akbari A (2012) New voltammetric strategy for simultaneous determination of norepinephrine, acetaminophen, and folic acid using a 5-amino-3′,4′-dimethoxy-biphenyl-2-ol/carbon nanotube paste electrode. Ionics 18:703–710

    Article  CAS  Google Scholar 

  50. Chandrashekar BN, Kumara Swamy BE (2012) Simultaneous cyclic voltammetric determination of norepinephrine, ascorbic acid and uric acid using TX-100 modified carbon paste electrode. Anal Methods 4:849–854

    Article  CAS  Google Scholar 

  51. Mahanthesha KR, Kumara Swamy BE, Chandra U, Bodke YD, Pai KV, Sherigara BS (2009) Cyclic voltammetric investigations of alizarin at carbon paste electrode using surfactants. Int J Electrochem Sci 4:1237–1247

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.E. Kumara Swamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuskur, C.M., Kumara Swamy, B. & Jayadevappa, H. Poly (naphthol green B) modified carbon paste electrode for the analysis of paracetamol and norepinephrine. Ionics 25, 1845–1855 (2019). https://doi.org/10.1007/s11581-018-2606-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2606-3

Keywords

Navigation