, Volume 25, Issue 2, pp 665–673 | Cite as

Core-shell structured Fe3O4@MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors

  • Jieting Ding
  • Juan Yang
  • Shan Ji
  • Shuhui HuoEmail author
  • Hui WangEmail author
Original Paper


A core-shell and spherical structured Fe3O4@MnO2 nanostructure is designed and developed via a facile and low-cost two-step method. Core-shell structured Fe3O4@MnO2 with uniform morphology can be obtained after layered structured δ-MnO2 is grown on the surface of Fe3O4 nanospheres. The crystal structures and morphology of as-prepared Fe3O4@MnO2 are characterized by scanning electron microscopy, X-ray diffraction, nitrogen isotherm analysis, and transmission electron microscopy. At the current density of 0.1 A g−1, the specific capacitance of Fe3O4@MnO2 is 243.7 F g−1, and its capacitance retention is almost 100% after 3000 continuous charge/discharge cycles at current density of 1 A g−1. The excellent cycling stability and low cost make this core-shell structured Fe3O4@MnO2 a promising electrode material for practical applications in pseudocapacitors.


MnO2 Fe3O4 Core-shell structure Cycling stability Supercapacitor 


Funding information

The authors would like to thank the National Natural Science Foundation of China (51661008 and 21766032) and Shenzhen Innovation Fund (JCYJ20160520161411353) for financially supporting this work.


  1. 1.
    Li S, Xu R, Wang H, Brett DJL, Ji S, Pollet BG, Wang R (2017) Ultra-high surface area and mesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. J Solid State Electrochem 21(10):2947–2954Google Scholar
  2. 2.
    Ding J, Ji S, Wang H, Key J, Brettc DJL, Wang R (2018) Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity. J Power Sources 374:48–54Google Scholar
  3. 3.
    Ji S, Ma Y, Wang H, Key J, Brett DJL, Wang R (2016) Cage-like MnO2-Mn2O3 hollow spheres with high specific capacitance and high rate capability as supercapacitor material. Electrochim Acta 219:540–546Google Scholar
  4. 4.
    Balamuralitharan B, Karthick S, Balasingam S, Hemalatha K, Selvam S, Raj J, Prabakar K, Jun Y, Kim H-J (2017) Hybrid reduced graphene oxide/MnSe2 cubes: a new electrode material for supercapacitors. Energ Technol 5(11):1953–1962Google Scholar
  5. 5.
    Balasingam S, Lee J, Jun Y (2015) Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans 44(35):15491–15498Google Scholar
  6. 6.
    Balasingam S, Lee J, Jun Y (2016) Molybdenum diselenide/reduced graphene oxide based hybrid nanosheets for supercapacitor applications. Dalton Trans 45(23):9646–9653Google Scholar
  7. 7.
    Wang H, Ren Q, Brett DJL, He G, Wang R, Key J, Ji S (2017) Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors. J Power Sources 343:76–82Google Scholar
  8. 8.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40(3):1697–1721Google Scholar
  9. 9.
    Wang H, Yan J, Wang R, Li S, Brett DJL, Key J, Ji S (2017) Toward high practical capacitance of Ni(OH)2 using highly conductive CoB nanochain supports. J Mater Chem A 5(1):92–96Google Scholar
  10. 10.
    Balasingam S, Lee M, Kim B, Lee J, Jun Y (2017) Freeze-dried MoS2 sponge electrodes for enhanced electrochemical energy storage. Dalton Trans 46(7):2122–2128Google Scholar
  11. 11.
    Balasingam S, Thirumurugan A, Lee J, Jun Y (2016) Amorphous MoSx thin-film-coated carbon fiber paper as a 3D electrode for long cycle life symmetric supercapacitors. Nanoscale 8(23):11787–11791Google Scholar
  12. 12.
    Chen L, Kang J, Hou Y, Liu P, Fujita T, Hirata A, Chen M (2013) High-energy-density nonaqueous MnO2@nanoporous gold based supercapacitors. J Mater Chem A 1(32):9202–9207Google Scholar
  13. 13.
    Ding J, Ji S, Wang H, Pollet BG, Wang R (2017) Tailoring nanopores within nanoparticles of PtCo networks as catalysts for methanol oxidation reaction. Electrochim Acta 255:55–62Google Scholar
  14. 14.
    Ren Q, Wang R, Wang H, Key J, Brett DJL, Ji S, Yin S, Shen P (2016) Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. J Mater Chem A 4(20):7591–7595Google Scholar
  15. 15.
    Han S-D, Kim S, Li D, Petkov V, Yoo H, Phillips P, Wang H, Kim J, More K, Key B, Klie R, Cabana J, Stamenkovic V, Fister T, Markovic N, Burrell A, Tepavcevic S, Vaughey J (2017) Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem Mater 29:4874–4884Google Scholar
  16. 16.
    Bag S, Raj CR (2016) Facile shape-controlled growth of hierarchical mesoporous [small delta]-MnO2 for the development of asymmetric supercapacitors. J Mater Chem A 4(21):8384–8394Google Scholar
  17. 17.
    Liu Q, Yang J, Wang R, Wang H, Ji S (2017) Manganese dioxide core–shell nanostructure to achieve excellent cycling stability for asymmetric supercapacitor applications. RSC Adv 7(53):33635–33641Google Scholar
  18. 18.
    Ma Y, Wang R, Wang H, Key J, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources 280:526–532Google Scholar
  19. 19.
    Alfaruqi MH, Gim J, Kim S, Song J, Pham DT, Jo J, Xiu Z, Mathew V, Kim J (2015) A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun 60:121–125Google Scholar
  20. 20.
    Liu Q, Ji S, Yang J, Wang H, Pollet BG, Wang R (2017) Enhanced cycleability of amorphous MnO2 by covering on α-MnO2 needles in an electrochemical capacitor. Mater 10(9):988Google Scholar
  21. 21.
    Kannan AM, Bhavaraju S, Prado F, Raja MM, Manthiram A (2002) Characterization of the bismuth-modified manganese dioxide cathodes in rechargeable alkaline cells. J Electrochem Soc 149(4):A483–A492Google Scholar
  22. 22.
    Cao J, Mao Q, Shi L, Qian Y (2011) Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment. J Mater Chem 21(40):16210–16215Google Scholar
  23. 23.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112(11):4406–4417Google Scholar
  24. 24.
    Wang L, Wang H (2017) Hydrothermal synthesis of porous K+-containing flower-like delte MnO2 with high specific capacitance. Micro Nano Lett 12(9):670–674Google Scholar
  25. 25.
    Ming B, Li J, Kang F, Pang G, Zhang Y, Chen L, Xu J, Wang X (2012) Microwave–hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198:428–431Google Scholar
  26. 26.
    Pang M, Long G, Jiang S, Ji Y, Han W, Wang B, Liu X, Xi Y (2015) One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications. Electrochim Acta 161:297–304Google Scholar
  27. 27.
    Ma Z, Shao G, Fan Y, Wang G, Song J, Shen D (2016) Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core–shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl Mater Interfaces 8(14):9050–9058Google Scholar
  28. 28.
    Yan J, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4(7):4247–4255Google Scholar
  29. 29.
    Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–106Google Scholar
  30. 30.
    Yang W, Gao Z, Ma J, Zhang X, Wang J (2014) Controlled synthesis of Co3O4 and Co3O4@MnO2 nanoarchitectures and their electrochemical capacitor application. J Alloys Compd 611:171–178Google Scholar
  31. 31.
    Wang K, Shi Z, Wang Y, Ye Z, Xia H, Liu G, Qiao G (2015) Co3O4 nanowires@MnO2 nanolayer or nanoflakes core–shell arrays for high-performance supercapacitors: the influence of morphology on performance. J Alloys Compd 624:85–93Google Scholar
  32. 32.
    Yu L, Zhang G, Yuan C, Lou XWD (2013) Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49(2):137–139Google Scholar
  33. 33.
    Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22(6):2419–2426Google Scholar
  34. 34.
    Kang E, Jung Y, Cavanagh AS, Kim G-H, George SM, Dillon AC, Kim J, Lee J (2011) Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv Funct Mater 21(13):2430–2438Google Scholar
  35. 35.
    Tartaj P, Morales MP, Sabino V-V, Teresita G-C, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197Google Scholar
  36. 36.
    Chen J, Huang K, Liu S (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55(1):1–5Google Scholar
  37. 37.
    Wang L, Zhang X, Wang S, Li Y, Qian B, Jiang X, Yang G (2014) Ultrasonic-assisted synthesis of amorphous Fe3O4 with a high specific surface area and improved capacitance for supercapacitor. Powder Technol 256:499–505Google Scholar
  38. 38.
    Wang Q, Jiao L, Du H, Wang Y, Yuan H (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106Google Scholar
  39. 39.
    Wang L, Yu J, Dong X, Li X, Xie Y, Chen S, Li P, Hou H, Song Y (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4(3):1531–1537Google Scholar
  40. 40.
    Zhu J, Tang S, Xie H, Dai Y, Meng X (2014) Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors. ACS Appl Mater Interfaces 6(20):17637–17646Google Scholar
  41. 41.
    Sahoo R, Pradhan M, Roy A, Dutta S, Ray C, Negishi Y, Pal A, Pal T (2015) Redox mediated synthesis of Fe3O4-MnO2 nanocomposite for dye adsorption and pseudocapacitance. Chem Asian J 10(7):1571–1580Google Scholar
  42. 42.
    Wang R, Jia J, Wang H, Wang Q, Ji S, Tian Z (2013) CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction. J Solid State Electrochem 17:1021–1028Google Scholar
  43. 43.
    Li Y, Xu Z, Wang D, Zhao J, Zhang H (2013) Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor. Electrochim Acta 251:344–354Google Scholar
  44. 44.
    Zhu S, Li L, Liu J, Wang H, Wang T, Zhang Y, Zhang L, Ruoff RS, Dong F (2018) Structural directed growth of ultrathin parallel Birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12(2):1033–1042Google Scholar
  45. 45.
    Zhu G, Li H, Deng L, Liu Z-H (2010) Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater Lett 64(16):1763–1765Google Scholar
  46. 46.
    Zhang X, Chang X, Chen N, Wang K, Kang L, Liu Z-h (2012) Synthesis and capacitive property of δ-MnO2 with large surface area. J Mater Sci 47(2):999–1003Google Scholar
  47. 47.
    Dong J, Lu G, Wu F, Xu C, Kang X, Cheng Z (2018) Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl Surf Sci 427:986–993Google Scholar
  48. 48.
    Jia Z, Wang J, Wang Y, Li B, Wang B, Qi T, Wang X (2016) Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors. J Mater Sci Technol 32(2):147–152Google Scholar
  49. 49.
    Sodtipinta J, Pon-On W, Veerasai W, Smith SM, Pakawatpanurut P (2013) Chelating agent- and surfactant-assisted synthesis of manganese oxide/carbon nanotube composite for electrochemical capacitors. Mater Res Bull 48(3):1204–1212Google Scholar
  50. 50.
    Wang X, Xu R, Wang R, Wang H, Brett DJL, Pollet BG, Ji S (2017) Nano-sized Co/Co(OH)2 core-shell structure synethsized in molten salt as electrode materials for supercapacitors. Ionics 23(3):725–730Google Scholar
  51. 51.
    Ma X, Ren Q, Wang H, Ji S (2017) Mesoporous and amorphous NiCoBP alloys with high specific capacitiance for supercapacitors. Ionics 24(2):529–537Google Scholar
  52. 52.
    Wang X, Huo S, Wang R, Wang H, Brett DJL, Ji S (2017) Synthesis of high surface area mesoporous MnO2 via a “metastable” aqueous interfacial reaction. J Colloid Interface Sci 503:76–85Google Scholar
  53. 53.
    Li G-R, Feng Z-P, Ou Y-N, Wu D, Fu R, Tong Y-X (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26(4):2209–2213Google Scholar
  54. 54.
    Zhang X, Ma J, Yang W, Gao Z, Wang J, Liu Q, Liu J, Jing X (2014) Manganese dioxide core–shell nanowires in situ grown on carbon spheres for supercapacitor application. CrystEngComm 16(16):4016–4022Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.College of Biological, Chemical Science and Chemical EngineeringJiaxing UniversityJiaxingChina

Personalised recommendations