Skip to main content

Advertisement

Log in

High performance CoO nanospheres catalyst synthesized by DC arc discharge plasma method as air electrode for lithium-oxygen battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, a highly-active cobalt oxide (CoO) nanospheres catalyst has been synthesized by DC arc discharge plasma method and used as air electrode for lithium oxygen battery. Through scanning electron microscopy (SEM) observation, the particle size of the cobalt oxide (CoO) catalyst can be controlled between 40~60 nm and dispersed uniformly into the active material. And then the cobalt oxide (CoO) nanospheres mixed with La2O3 and Pt/C makes up the ternary catalyst of the air electrode for lithium oxygen battery. The electrochemical test results show that the oxygen reduction reaction peaks are more obvious, and the increase of charge transfer rate has no significant influence on the diffusion mass transfer rate. The specific capacity and energy density of air electrode with Co-La-Pt ternary catalyst can respectively reach 3250.2 mAh g−1 and 8574.2 Wh kg−1 at 0.025 mA cm−2. After 62 cycles, 38.3% of the initial capacity can still be maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang X, Zhong X, Xu W, Li X, Liu W, Lin Y (2018) Preparation and electrochemical properties of Li4Ti5O12/Ti4O7 composite for lithium-ion batteries. Ionics 24:379–384

    Article  CAS  Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  3. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium–air battery. Nat Chem 4:579–585

    Article  CAS  PubMed  Google Scholar 

  4. Hu Y, Wang ZL (2015) Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 14:3–14

    Article  CAS  Google Scholar 

  5. Liu Y, Cheng M, Guo X, Wu Z, Chen Y, Xiang W, Li J, Zhong B (2017) Synthesis and electrochemical performance of micro-mesoporous carbon-sulfur composite cathode for Li-S batteries. Ionics 23:2951–2960

    Article  CAS  Google Scholar 

  6. Tan A, Reddy MV, Adams S (2017) Synthesis and application of nanostructured MCo2O4 (M=Co,Ni) for hybrid Li-air batteries. Ionics 23:2589–2602

    Article  CAS  Google Scholar 

  7. Strubel P, Thieme S, Biemelt T, Helmer A, Oschatz M, Brückner J, Althues H, Kaskel S (2015) Hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv Funct Mater 25:287–297

    Article  CAS  Google Scholar 

  8. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  9. Jadhav HS, Kalubarme RS, Jadhav AH, Seo JG (2016) Iron-nickel spinel oxide as an electrocatalyst for non-aqueous rechargeable lithium-oxygen batteries. J Alloys Compd 666:476–481

    Article  CAS  Google Scholar 

  10. Lu Y, S f T, Qiu FL, Jiang J, Feng NN, Zhang XP, He P, Zhou HS (2016) Exploration of LiO2 by the method of electrochemical quartz crystal microbalance in TEGDME based Li-O2 battery. J Power Sources 329:525–529

    Article  CAS  Google Scholar 

  11. Crowther O, Keeny D, Moureau DM, Meyer B, Salomon M, Hendrickson M (2012) Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane. J Power Sources 202(1):347–351

    Article  CAS  Google Scholar 

  12. Laino T, Curioni A (2013) Chemical reactivity of aprotic electrolytes on a solid Li2O2 surface: screening solvents for Li-air batteries. New J Phys 15(12):534–541

    Google Scholar 

  13. Yu L, Shen Y, Huang Y (2014) Fe-N-C catalyst modified graphene sponge as a cathode material for lithium-oxygen battery. J Alloys Compd 595:185–191

    Article  CAS  Google Scholar 

  14. Zhang M, Takahashi K, Uechi I, Takeda Y, Yamamoto O, Im D, Lee DJ, Chi B, Pu J, Imanishi N (2013) Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3–TiO2 sheet prepared by tape casting method for lithium-air batteries. J Power Sources 235:117–121

    Article  CAS  Google Scholar 

  15. Safanama D, Adams S (2017) High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes. J Power Sources 340:294–301

    Article  CAS  Google Scholar 

  16. Black R, Lee JH, Adams B, Mims CA, Nazar LF (2012) The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Ed 52:392–396

    Article  CAS  Google Scholar 

  17. Sun N, Liu H, Yu Z, Zheng Z, Shao C (2016) The electrochemical performance of La0.6Sr0.4Co1-xNixO3 perovskite catalysts for Li-O2 batteries. Ionics 22:869–876

    Article  CAS  Google Scholar 

  18. Sevim M, Francia C, Amici J, Vankova S, Sener T, Metin Ö (2016) Bimetallic MPt (M: Co,Cu,Ni) alloy nanoparticle assembled on reduced graphene oxide as high performance cathode catalysts for rechargeable lithium-oxygen batteries. J Alloys Compd 683:231–240

    Article  CAS  Google Scholar 

  19. Liu J, Zhao Y, Li X, Wang C, Zeng Y, Yue G, Chen Q (2018) CuCr2O4@rGo Nanocomposites as high-performance cathode catalyst for rechargeable lithium-oxygen batteries. Nano-Micro Lett 10:22

    Article  CAS  Google Scholar 

  20. Wei ZH, Zhao TS, Zhu XB, Tan P (2016) MnO2-x nanosheets on stainless steel felt as a carbon-and binder-free cathode for non-aqueous lithium-oxygen batteries. J Power Sources 306:724–732

    Article  CAS  Google Scholar 

  21. Shao Y, Park S, Xiao J, Zhang JG, Wang Y, Liu J (2012) Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2:844–857

    Article  CAS  Google Scholar 

  22. Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451

    Article  CAS  Google Scholar 

  23. Tong S, Zheng M, Lu Y, Lin Z, Li J, Zhang X, Shi Y, Zhou H (2015) Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O2 batteries. J Mater Chem A 3:16177–16182

    Article  CAS  Google Scholar 

  24. Zhang GQ, Zheng JP, Liang R, Zhang C, Wang B, Hendrichson MA, Plichta EJ (2011) α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries. J Electrochem Soc 158:A822–A827

    Article  CAS  Google Scholar 

  25. Do JS, Weng CH (2005) Preparation and characterization of CoO used as anodic material of lithium battery. J Power Sources 146:482–486

    Article  CAS  Google Scholar 

  26. Khajehbashi SMB, Li J, Wang M, Wang M, Xu L, Zhao K, Wei Q, Shi C, Tang C, Huang L, Wang Z, Mai L (2017) A crystalline/amorphous cobalt (II ,III) oxide hybrid electrocatalyst tor lithium-air batteries. Energy Technol 5:568–579

    Article  CAS  Google Scholar 

  27. Wang B, Abdulla WA, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875

    Article  CAS  Google Scholar 

  28. Wang B, Xie Y, Liu T, Luo H, Wang B, Wang C, Wang L, Wang D, Dou S, Zhou Y (2017) LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy 42:363–372

    Article  CAS  Google Scholar 

  29. Wang B, Liu T, Liu A, Liu G, Wang L, Gao T, Wang D, Zhao XS (2016) A hierarchical porous C@LiFePO4/carbon nanotubes microsphere composite for high-rate lithium-ion batteries: combined experimental and theoretical study. Adv Energy Mater 6:1600426

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21373002), the Natural Science Foundation of Liaoning Province of China (No.20170540021), the Project of Education Department of Liaoning Province of China (No.LF2017004, LQ2017014), and the Liaoning BaiQianWan Talents Program (No. 201797).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoshi Lang or Kedi Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, X., Zhang, Y., Cai, K. et al. High performance CoO nanospheres catalyst synthesized by DC arc discharge plasma method as air electrode for lithium-oxygen battery. Ionics 25, 35–40 (2019). https://doi.org/10.1007/s11581-018-2588-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2588-1

Keywords

Navigation