The lithium-ion-conducting ceramic composite based on LiTi2(PO4)3 with addition of LiF

Abstract

The ceramic composites formed in the system LiTi2(PO4)3–LiF were studied by means of X-ray diffractometry, thermogravimetry, scanning electron microscopy, impedance spectroscopy, and density methods. Introduction of the foreign phase into the polycrystalline LiTi2(PO4)3-based material resulted in significant reduction of grain boundary resistance. However, a slight decrease of the conductivity could be observed when higher contents of lithium fluoride additive were present in the composite. The maximum total conductivity of ca. 3.08 × 10−5 S cm−1 was obtained for lithium titanium phosphate (LTP)–0.1LiF sample sintered at 1073 K in comparison to 5.15 × 10−8 S cm−1 for the pure ceramic LTP. The most dense material was obtained after sintering at 1073 K.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Thangadurai V, Schwenzel J, Weppner W (2005) Tailoring ceramics for specific applications: a case study of the development of all–solid–state lithium batteries. Ionics 11:11–23. https://doi.org/10.1007/BF02430397

    Article  CAS  Google Scholar 

  2. 2.

    Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12:81–92. https://doi.org/10.1007/s11581-006-0013-7

    Article  CAS  Google Scholar 

  3. 3.

    Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916. https://doi.org/10.1016/j.ssi.2009.03.022

    Article  CAS  Google Scholar 

  4. 4.

    Chandra A, Bhatt A, Chandra A (2013) Ion conduction in superionic glassy electrolytes: an overview. J Mater Sci Technol 29:193–208. https://doi.org/10.1016/j.jmst.2013.01.005

    Article  CAS  Google Scholar 

  5. 5.

    Oudenhoven JFM, Baggetto L, Notten PHL (2011) All-solid-state lithium–ion microbatteries: a review of various three–dimensional concepts. Adv Energy Mater 1:10–33. https://doi.org/10.1002/aenm.201000002

    Article  CAS  Google Scholar 

  6. 6.

    Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mat 61:759–770. https://doi.org/10.1016/j.actamat.2012.10.034

    Article  CAS  Google Scholar 

  7. 7.

    Dokko K, Hoshina K, Nakano H, Kanamura K (2007) Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2–x(PO4)3 NASICON-type solid electrolyte. J Pow Sour 174:1100–1103. https://doi.org/10.1016/j.jpowsour.2007.06.137

    Article  CAS  Google Scholar 

  8. 8.

    Abrahams I, Hadzifejzovic E (2000) Lithium ion conductivity and thermal behavior of glasses and crystallised glasses in the system Li2O–Al2O3–TiO2–P2O5. Solid State Ionics 134:249–257. https://doi.org/10.1016/S0167-2738(00)00768-2

    Article  CAS  Google Scholar 

  9. 9.

    Chen H, Tao H, Wu Q, Zhao X (2013) Crystallization kinetics of superionic conductive Al(B, La)-incorporated LiTi2(PO4)3 glass-ceramics. J Am Ceram Soc 96:801–805. https://doi.org/10.1111/jace.12094

    Article  CAS  Google Scholar 

  10. 10.

    Hupfer T, Bucharsky EC, Schell KG, Hoffmann MJ (2017) Influence of the secondary phase LiTiOPO4 on the properties of Li1+xAlxTi2–x(PO4)3 (x=0;0.3). Solid State Ionics 302:49–53. https://doi.org/10.1016/j.ssi.2016.10.008

    Article  CAS  Google Scholar 

  11. 11.

    Mariappan CR, Galven C, MP C–L, Le Berre F, Bohnke O (2006) Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J Sol State Chem 179:450–456. https://doi.org/10.1016/j.jssc.2005.11.005

    Article  CAS  Google Scholar 

  12. 12.

    Mariappan CR, Gellert M, Yada C, Rosciano F, Roling B (2012) Grain boundary resistance of fast lithium ion conductors: comparison between a lithium–ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic. Ele Com 14:25–28. https://doi.org/10.1016/j.elecom.2011.10.022

    Article  CAS  Google Scholar 

  13. 13.

    Arbi K, Rojo JM, Sanz J (2007) Lithium mobility in titanium based Nasicon Li1+xAlxTi2–x(PO4)3 and Li1+xTi2–xZrx(PO4)3 materials followed by NMR and impedance spectroscopy. J Eur Ceram Soc 27:4215–4218. https://doi.org/10.1016/j.jeurceramsoc.2007.02.118

    Article  CAS  Google Scholar 

  14. 14.

    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023–1027. https://doi.org/10.1149/1.2086597

    Article  CAS  Google Scholar 

  15. 15.

    Arbi K, Mandal S, Rojo JM, Sanz J (2002) Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2–xAlx(PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study. Chem Mat 14:1091–1097. https://doi.org/10.1021/cm010528i

    Article  CAS  Google Scholar 

  16. 16.

    Wang S, Ben L, Li H, Chen L (2014) Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range. Solid State Ionics 268:110–116. https://doi.org/10.1016/j.ssi.2014.10.004

    Article  CAS  Google Scholar 

  17. 17.

    Arbi K, Tabellout M, Sanz J (2010) NMR and electric impedance study of lithium mobility in fast ion conductors Li1+xTi2–xZrx(PO4)3. Solid State Ionics 180:1613–1619. https://doi.org/10.1016/j.ssi.2009.11.010

    Article  CAS  Google Scholar 

  18. 18.

    Kahlaoui R, Arbi K, Sobrados I, Jimenez R, Sanz J, Ternane R (2017) Cation miscibility and lithium mobility in NASICON Li1+xTi2–xScx(PO4)3 (0≤x≤0.5) series: a combined NMR and impedance study. Inorg Chem 56:1216–1224. https://doi.org/10.1021/acs.inorgchem.6b02274

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Šalkus T, Barre M, Kežionis A, Kazakevičius E, Bohnke O, Selskienė A, Orliukas AF (2012) Ionic conductivity of Li1.3Al0.3–xScxTi1.7(PO4)3 (x=0,0.1,0.15,0.2,0.3) solid electrolytes prepared by Pechini process. Solid State Ionics 225:615–619. https://doi.org/10.1016/j.ssi.2012.03.045

    Article  CAS  Google Scholar 

  20. 20.

    Best AS, Forsyth M, MacFarlane DR (2000) Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2–x(PO4)3: impedance, X–ray and NMR studies. Solid State Ionics 136–137:339–344

    Article  Google Scholar 

  21. 21.

    Kobayashi Y, Takeuchi T, Tabuchi M, Ado K, Kageyama H (1999) Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering. J Power Sources 81–82:853–858. https://doi.org/10.1016/S0378-7753(99)00121-4

    Article  Google Scholar 

  22. 22.

    Chang CM, Lee YI, Hong SH, Park HM (2005) Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes. J Am Ceram Soc 88:1803–1807. https://doi.org/10.1111/j.1551-2916.2005.00246.x

    Article  CAS  Google Scholar 

  23. 23.

    Kwatek K, Nowiński JL (2017) Studies on electrical properties of composites based on lithium titanium phosphate with lithium iodide. Solid State Ionics 302:35–39. https://doi.org/10.1016/j.ssi.2016.12.007

    Article  CAS  Google Scholar 

  24. 24.

    Kwatek K, Nowiński JL (2017) Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid. Solid State Ionics 302:54–60. https://doi.org/10.1016/j.ssi.2016.11.020

    Article  CAS  Google Scholar 

  25. 25.

    Xiong L, Ren Z, Xu Y, Mao S, Lei P, Sun M (2017) LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity. Solid State Ionics 309:22–26. https://doi.org/10.1016/j.ssi.2017.06.018

    Article  CAS  Google Scholar 

  26. 26.

    Chen CF, Brennecka GL, King G, Tegtmeier EL, Holesinger T, Ivy J, Yang P (2017) Processing of crack-free high density polycrystalline LiTaO3 ceramics. J Mater Sci Mater Electron 28:3725–3732. https://doi.org/10.1007/s10854-016-5980-5

    Article  CAS  Google Scholar 

  27. 27.

    Hao YZ, Yang H, Chen GH, Zhang QL (2013) Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J Alloys Compd 552:173–179. https://doi.org/10.1016/j.jallcom.2012.10.110

    Article  CAS  Google Scholar 

  28. 28.

    Luo W, Xie R, Ivanov M, Pan Y, Kou H, Li J (2017) Effects of LiF on the microstructure and optical properties of hot-pressed MgAl2O4 ceramics. Ceram Int 43:6891–6897. https://doi.org/10.1016/j.ceramint.2017.02.110

    Article  CAS  Google Scholar 

  29. 29.

    Marder R, Chaim R, Chevallier G, Estournes C (2011) Effect of 1 wt% LiF additive on the densification of nanocrystalline Y2O3 ceramics by spark plasma sintering. J Eur Ceram Soc 31:1057–1066. https://doi.org/10.1016/j.jeurceramsoc.2010.12.032

    Article  CAS  Google Scholar 

  30. 30.

    Porfirio TC, Muccillo ENS (2016) Effects of LiF addition on microstructure and dielectric properties of CaCu3Ti4O12 ceramics. Ceram Int 42:12005–12009. https://doi.org/10.1016/j.ceramint.2016.04.127

    Article  CAS  Google Scholar 

  31. 31.

    Wang MJ, Yang H, Zhang QL, Yu D, Hu L, Lin ZS, Zhang ZS (2015) Low temperature sintering properties of LiF-doped BaTiO3-based dielectric ceramics for AC MLCCs. J Mater Sci Mater Electron 26:162–167. https://doi.org/10.1007/s10854-014-2378-0

    Article  CAS  Google Scholar 

  32. 32.

    Yang Z, Wang B, Ren Y, Liu Y, Shang Q, Yang Y, Liu X, Wang H (2017) Densification behavior, microstructure, mechanical and optical properties of Mg-doped sialon with fluoride additives. J Eur Ceram Soc 37:1985–1992. https://doi.org/10.1016/j.jeurceramsoc.2017.01.002

    Article  CAS  Google Scholar 

  33. 33.

    Reimanis I, Kleebe HJ (2009) A review on the sintering and microstructure development of transparent spinel (MgAl2O4). J Am Ceram Soc 92:1472–1480. https://doi.org/10.1111/j.1551-2916.2009.03108.x

    Article  CAS  Google Scholar 

  34. 34.

    Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58:63–112. https://doi.org/10.1179/1743280412Y.0000000001

    Article  CAS  Google Scholar 

  35. 35.

    Benecke MW, Olson NE, Pask JA (1967) Effect of LiF on hot-pressing of MgO. J Am Ceram Soc 50:365–368. https://doi.org/10.1111/j.1151-2916.1967.tb15132.x

    Article  CAS  Google Scholar 

  36. 36.

    Yamada H, Tsunoe D, Shiraishi S, Isomichi G (2015) Reduced grain boundary resistance by surface modification. J Phys Chem C 119:5412–5419. https://doi.org/10.1021/jp510077z

    Article  CAS  Google Scholar 

  37. 37.

    Bouchet R, Knauth P, Laugier JM (2003) Theoretical analysis of IS of polycrystalline materials with blocking or conducting grain boundaries: from microcrystals to nanocrystals. J Electrochem Soc 150:E348–E354. https://doi.org/10.1149/1.1580151

    Article  CAS  Google Scholar 

  38. 38.

    Bouchet R, Knauth P, Laugier JM (2006) Theoretical analysis of the impedance spectra of electroceramics part 2: isotropic grain boundaries. J Electroceram 16:229–238. https://doi.org/10.1007/s10832-006-8278-9

    Article  Google Scholar 

  39. 39.

    Kidner NJ, Perry NH, Mason TO (2008) The brick layer model revisited: introducing the nano-grain composite model. J Am Ceram Soc 91:1733–1746. https://doi.org/10.1111/j.1551-2916.2008.02445.x

    Article  CAS  Google Scholar 

  40. 40.

    Kidner NJ, Homrighaus ZJ, Ingram BJ, Mason TO, Garboczi EJ (2005) Impedance/dielectric spectroscopy of electroceramics—part 1: evaluation of composite models for polycrystalline ceramics. J Electroceram 14:283–291. https://doi.org/10.1007/s10832-005-0969-0

    Article  CAS  Google Scholar 

  41. 41.

    Kidner NJ, Homrighaus ZJ, Ingram BJ, Mason TO, Garboczi EJ (2005) Impedance/dielectric spectroscopy of electroceramics—part 2: grain shape effects and local properties of polycrystalline ceramics. J Electroceram 14:293–301. https://doi.org/10.1007/s10832-005-0968-1

    Article  CAS  Google Scholar 

  42. 42.

    Kojima H, Whiteway SG, Masson CR (1968) Melting points of inorganic fluorides. Can J Chem 46:2968–2971. https://doi.org/10.1139/v68-494

    Article  CAS  Google Scholar 

  43. 43.

    Tacvorian S (1954) Sintering by surface activation. Bull Soc Franc Ceram 23:3–8

    Google Scholar 

  44. 44.

    Rosero–Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K (2017) Effect of sintering additives on relative density and Li–ion conductivity of Nb-doped Li7La3ZrO12 solid electrolyte. J Am Ceram Soc 100:276–285. https://doi.org/10.1111/jace.14572

  45. 45.

    Xu B, Huang B, Liu H, Duan H, Zhong S, Wang CA (2017) Influence of sintering additives on Li+ conductivity and electrochemical property of perovskite-type Li3/8Sr7/16Hf1/4Ta3/4O3. Electrochim Acta 234:1–6. https://doi.org/10.1016/j.electacta.2017.03.041

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Kwatek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwatek, K., Nowiński, J.L. The lithium-ion-conducting ceramic composite based on LiTi2(PO4)3 with addition of LiF. Ionics 25, 41–50 (2019). https://doi.org/10.1007/s11581-018-2584-5

Download citation

Keywords

  • Solid electrolyte
  • Impedance spectroscopy
  • Grain boundary conductivity enhancement
  • Composite
  • Ceramic