Skip to main content

Hierarchical Co3O4@C hollow microspheres with high capacity as an anode material for lithium-ion batteries

Abstract

Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g−1 after 100 cycles at 0.2 A g−1 and 842.7 mAh g−1 after 600 cycles at 1 A g−1), and prominent rate performance (580.9 mAh g−1 at 5 A g−1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  3. Reddy MV, Subba Rao GV, Chowdari BV (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  5. Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 147:1245–2134

    Article  CAS  Google Scholar 

  6. Atanasov M, Hitchman MA, Hoppe R et al (2011) An overview of graphene in energy production and storage applications. J Power Sources 196:4873–4885

    Article  Google Scholar 

  7. Yoshio M, Wang H, Fukuda K (2003) Spherical carbon-coated natural graphite as a lithium-ion battery anode material. Angew Chem 42:4203–4206

    Article  CAS  Google Scholar 

  8. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  9. Kundu M, Karunakaran G, Kolesnikov E, Sergeevna VE, Kumari S, V. Gorshenkov M, Kuznetsov D (2018) Hollow NiCo2O4 nano-spheres obtained by ultrasonic spray pyrolysis method with superior electrochemical performance for lithium-ion batteries and supercapacitors. J Ind Eng Chem 59:90–98

    Article  CAS  Google Scholar 

  10. Kundu M, Karunakaran G, Minh NV, Kolesnikov E, Gorshenkov MV, Kuznetsov D (2017) Hollow Cu0.10Mg0.40Zn0.50Fe2O4/Ca2Ni5 nanocomposite: a novel form as anode material in lithium-ion battery. J Alloys Compd 710:501–509

    Article  CAS  Google Scholar 

  11. Sun H, Ang HM, Tadé MO, Wang S (2013) Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications. J Mater Chem A 1:14427–14442

    Article  CAS  Google Scholar 

  12. Xia X, Zhang Y, Chao D et al (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nano 6:5008–5048

    CAS  Google Scholar 

  13. Binotto G, Larcher D, Prakash AS et al (2007) Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem Mater 15:210–215

    Google Scholar 

  14. Wang Y, Xia H, Lu L, Lin J (2010) Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 4:1425–1432

    Article  CAS  Google Scholar 

  15. Du H, Yuan C, Huang K et al (2017) A novel gelatin-guided mesoporous bowknot-like Co3O4 anode material for high-performance lithium-ion batteries. J Mater Chem A 5:5342–5350

    Article  CAS  Google Scholar 

  16. Kim Y, Lee JH, Cho S, Kwon Y, in I, Lee J, You NH, Reichmanis E, Ko H, Lee KT, Kwon HK, Ko DH, Yang H, Park B (2014) Additive-free hollow-structured Co3O4 nanoparticle Li-ion battery: the origins of irreversible capacity loss. ACS Nano 8:6701–6712

    Article  CAS  Google Scholar 

  17. Zhan L, Chen H, Fang J, Wang S, Ding LX, Li Z, Ashman PJ, Wang H (2016) Coaxial Co3O4@polypyrrole core-shell nanowire arrays for high performance lithium ion batteries. Electrochim Acta 209:192–200

    Article  CAS  Google Scholar 

  18. Wang B, Zhu T, Wu HB et al (2012) Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)0.11H2O nanowires with improved supercapacitive properties. Nano 4:2145–2149

    CAS  Google Scholar 

  19. Chen M, Xia X, Yin J, Chen Q (2015) Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim Acta 160:15–21

    Article  CAS  Google Scholar 

  20. Gu D, Li W, Wang F, Bongard H, Spliethoff B, Schmidt W, Weidenthaler C, Xia Y, Zhao D, Schüth F (2015) Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries. Angew Chem 54:7060–7064

    Article  CAS  Google Scholar 

  21. Yan C, Chen G, Sun J, Zhou X, Lv C (2016) A novel anode comprised of C&N co-doped Co3O4 hollow nanofibres with excellent performance for lithium-ion batteries. Phys Chem Chem Phys 18:19531–19535

    Article  CAS  Google Scholar 

  22. Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26:1428–1436

    Article  CAS  Google Scholar 

  23. Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed 128:6094–6097

    Article  Google Scholar 

  24. Luo Y, Luo J, Zhou W, Qi X, Zhang H, Yu DYW, Li CM, Fan HJ, Yu T (2013) Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J Mater Chem A 1:273–281

    Article  CAS  Google Scholar 

  25. Tian L, Zou H, Fu J, Yang X, Wang Y, Guo H, Fu X, Liang C, Wu M, Shen PK, Gao Q (2010) Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable clectrochemical performance. Adv Funct Mater 20:617–623

    Article  CAS  Google Scholar 

  26. Sun Z, Liao T, Dou Y et al (2014) Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat Commun 5:3813–3821

    Article  CAS  Google Scholar 

  27. Wang B, Lu XY, Tang Y (2015) Synthesis of snowflake-shaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries. J Mater Chem A 3:9689–9699

    Article  CAS  Google Scholar 

  28. Zhu S, Li J, Deng X, He C, Liu E, He F, Shi C, Zhao N (2017) Ultrathin-nanosheet-induced synthesis of 3D transition metal cxides networks for lithium ion battery anodes. Adv Funct Mater 27:1605017

    Article  Google Scholar 

  29. Li C, Chen T, Xu W, Lou X, Pan L, Chen Q, Hu B (2015) Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J Mater Chem A 3:5585–5591

    Article  CAS  Google Scholar 

  30. Wang D, Yu Y, He H, Wang J, Zhou W, Abruña HD (2015) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9:1775–1781

    Article  CAS  Google Scholar 

  31. Li HH, Zhou L, Zhang LL, Fan CY, Fan HH, Wu XL, Sun HZ, Zhang JP (2017) Co3O4 nanospheres embedded in a nitrogen-doped carbon framework: an electrode with fast surface-controlled redox kinetics for lithium storage. ACS Energy Lett 2:52–59

    Article  CAS  Google Scholar 

  32. Chen F, Liu X, Zhang Z, Zhang N, Pan A, Liang S, Ma R (2016) Controllable fabrication of urchin-like Co3O4 hollow spheres for high-performance supercapacitors and lithium-ion batteries. Dalton Trans 45:15155–15161

    Article  CAS  Google Scholar 

  33. Sun H, Xin G, Hu T et al (2014) High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun 5:4526–4533

    Article  CAS  Google Scholar 

  34. Rui X, Tan H, Sim D, Liu W, Xu C, Hng HH, Yazami R, Lim TM, Yan Q (2013) Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties. J Power Sources 222:97–102

    Article  CAS  Google Scholar 

  35. Wu R, Qian X, Rui X, Liu H, Yadian B, Zhou K, Wei J, Yan Q, Feng XQ, Long Y, Wang L, Huang Y (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10:1932–1938

    Article  CAS  Google Scholar 

  36. Kundu M, Karunakaran G, Kolesnikov E, Dmitry A, Gorshenkov MV, Kuznetsov D (2017) Hollow (Co0.62Fe1.38)FeO4/NiCo2O4 nanoboxes with porous shell synthesized via chemical precipitation: a novel form as a high performance lithium ion battery anode. Micropor Mesopor Mater 247:9–15

    Article  CAS  Google Scholar 

  37. Kundu M, Karunakaran G, Kumari S, Minh NV, Kolesnikov E, Gorshenkov MV, Kuznetsov D (2017) One-pot ultrasonic spray pyrolysis mediated hollow Mg0.25Cu0.25Zn0.5Fe2O4/NiFe2O4 nanocomposites: a promising anode material for high-performance lithium-ion battery. J Alloys Compd 725:665–672

    Article  CAS  Google Scholar 

  38. Zhao Y, Li Y, Ma C, Shao Z (2016) Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries. Electrochim Acta 213:98–106

    Article  CAS  Google Scholar 

  39. Abouali S, Akbari GM, Zhang B et al (2014) Co3O4/porous electrospun carbon nanofibers as anodes for high performance Li-ion batteries. J Mater Chem A 2:16939–16944

    Article  CAS  Google Scholar 

  40. Xie Z, Jiang C, Xu W, Cui X, de los Reyes C, Martí AA, Wang Y (2017) Facile self-assembly route to Co3O4 nanoparticles confined into single-walled carbon nanotube matrix for highly reversible lithium storage. Electrochim Acta 235:613–622

    Article  CAS  Google Scholar 

  41. Huang G, Zhang F, Du X et al (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599

    Article  CAS  Google Scholar 

  42. Dou Y, Xu J, Ruan B, Liu Q, Pan Y, Sun Z, Dou SX (2016) Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater 6:1501835

    Article  Google Scholar 

  43. Li L, Zhou G, Shan XY, Pei S, Li F, Cheng HM (2014) Co3O4 mesoporous nanostructures@graphene membrane as an integrated anode for long-life lithium-ion batteries. J Power Sources 255:52–58

    Article  CAS  Google Scholar 

  44. Yin D, Huang G, Sun Q, Li Q, Wang X, Yuan D, Wang C, Wang L (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419

    Article  CAS  Google Scholar 

  45. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  46. Shen L, Wang C (2014) Hierarchical Co3O4 nanoparticles embedded in a carbon matrix for lithium-ion battery anode materials. Electrochim Acta 133:16–22

    Article  CAS  Google Scholar 

  47. Needham SA, Wang GX, Konstantinov K, Tournayre Y, Lao Z, Liu HK (2006) Electrochemical performance of Co[sub3]O[sub4]–C composite anode materials. Electrochem Solid-State Lett 9:A315–A319

    Article  CAS  Google Scholar 

  48. Geng H, Zhou Q, Pan Y et al (2014) Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries. Nano 6:3889–3894

    CAS  Google Scholar 

  49. Cao Y, Liu H, Bo X, Wang F (2015) Highly active porous nickel-film electrode via polystyrene microsphere template-assisted composite electrodeposition for hydrogen-evolution reaction in alkaline medium. Sci China Chem 58:501–507

    Article  CAS  Google Scholar 

  50. Zhu H, Zhang Q, Zhu S (2015) Preparation of raspberry-like ZIF-8/PS composite spheres via dispersion polymerization. Dalton Trans 44:16752–16757

    Article  CAS  Google Scholar 

  51. Wang H, Mao N, Shi J, Wang Q, Yu W, Wang X (2015) Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7:2882–2890

    Article  CAS  Google Scholar 

  52. Yang Y, Huang J, Zeng J, Xiong J, Zhao J (2017) Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Appl Mater Interfaces 9:32801–32811

    Article  CAS  Google Scholar 

  53. Peng L, Feng Y, Bai Y, Qiu HJ, Wang Y (2015) Designed synthesis of hollow Co3O4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. J Mater Chem A 3:8825–8831

    Article  CAS  Google Scholar 

  54. Han S, Liu S, Wang R, Liu X, Bai L, He Z (2017) One-step electrodeposition of nanocrystalline ZnxCo3-xO4 films with high activity and stability for electrocatalytic oxygen evolution. ACS Appl Mater Interfaces 9:17186–17194

    Article  CAS  Google Scholar 

  55. Han F, Zhang C, Sun B, Tang W, Yang J, Li X (2017) Dual-carbon phase-protective cobalt sulfide nanoparticles with cable-type and mesoporous nanostructure for enhanced cycling stability in sodium and lithium ion batteries. Carbon 118:731–742

    Article  CAS  Google Scholar 

  56. Zhao K, Liu S, Ye G, Gan Q, Zhou Z, He Z (2018) High-yield bottom-up synthesis of 2D metal-organic frameworks and their derived ultrathin carbon nanosheets for energy storage. J Mater Chem A 6:2166–2175

    Article  CAS  Google Scholar 

  57. Zhang Z, Li L, Xu Q, Cao B (2015) 3D hierarchical Co3O4 microspheres with enhanced lithium-ion battery performance. RSC Adv 5:61631–61638

    Article  CAS  Google Scholar 

  58. Wang X, Zhou B, Guo J, Zhang W, Guo X (2016) Selective crystal facets exposing of dumbbell-like Co3O4 towards high performances anode materials in lithium-ion batteries. Mater Res Bull 83:414–422

    Article  CAS  Google Scholar 

  59. Leng X, Wei S, Jiang Z, Lian J, Wang G, Jiang Q (2015) Carbon-encapsulated Co3O4 nanoparticles as anode materials with super lithium storage performance. Sci Rep 5:16629–16639

    Article  CAS  Google Scholar 

  60. He J, Chen Y, Li P, Fu F, Wang Z, Zhang W (2015) Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries. Electrochim Acta 182:424–429

    Article  CAS  Google Scholar 

  61. Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy 2:49–56

    Article  CAS  Google Scholar 

  62. Vlad A, Singh N, Rolland J et al (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4:4315–4321

    Article  CAS  Google Scholar 

  63. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  CAS  Google Scholar 

  64. Lou P, Cui Z, Jia Z, Sun J, Tan Y, Guo X (2017) Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 11:3705–3715

    Article  CAS  Google Scholar 

  65. Song Y, Chen Z, Li Y, Wang Q, Fang F, Zhou YN, Hu L, Sun D (2017) Pseudocapacitance-tuned high-rate and long-term cyclability of NiCo2S4 hexagonal nanosheets prepared by vapor transformation for lithium storage. J Mater Chem A 5:9022–9031

    Article  CAS  Google Scholar 

  66. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518–522

    Article  CAS  Google Scholar 

  67. Han S, Liu S, Yin S, Chen L, He Z (2016) Electrodeposited Co-doped Fe3O4 thin films as efficient catalysts for the oxygen evolution reaction. Electrochim Acta 210:942–949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 21303270), Hunan Provincial Natural Science Foundation of China (grant no. 2018JJ2485), Hunan Provincial Science and Technology Plan Project (grant nos. 2017TP1001 and 2016TP1007), Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of P. R. China (grant no. 2013[1792]), and Innovation-Driven Project of Central South University (grant no. 2016CXS031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 949 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhao, K., Gan, Q. et al. Hierarchical Co3O4@C hollow microspheres with high capacity as an anode material for lithium-ion batteries. Ionics 24, 3757–3769 (2018). https://doi.org/10.1007/s11581-018-2554-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2554-y

Keywords