Ionics

pp 1–11 | Cite as

The multiple effects of Al-doping on the structure and electrochemical performance of LiNi0.5Mn0.5O2 as cathode material at high voltage

  • Guofeng Jia
  • Suqin Liu
  • Guowei Yang
  • Faqiang Li
  • Kang Wu
  • Zhen He
  • Xuehui Shangguan
Original Paper
  • 27 Downloads

Abstract

The application of LiNi0.5Mn0.5O2 as a high-voltage cathode material for lithium-ion batteries is limited by its poor cycle performance. Therefore, we attempt to improve the cyclability of this material at high voltage by using a doping method and propose a detailed mechanism for the effect of the doping amount on the structure and electrochemical performance. In this work, LiNi0.5-zAl z Mn0.5O2 (z = 0.00, 0.03, 0.05, 0.08) electrodes were prepared via a simple co-precipitation followed by a solid-state method. X-ray diffraction and Rietveld refinement revealed that a suitable amount of Al doping into LiNi0.5Mn0.5O2 can stabilize the structure and lower the Li/Ni cation mixing, but an excessive doping would lead to Al-ion doping in the lithium layer, which can block lithium diffusion and affect the rate property. Specifically, LiNi0.47Al0.03Mn0.5O2 shows a much higher capacity retention compared to LiNi0.5Mn0.5O2 both at 25 °C (78.5 vs. 68.8% at 0.2 C) and 60 °C (70.8 vs. 69.0% at 0.2 C). Moreover, Al-doping can retard the voltage drop during the discharge-charge state, with the discharge voltage for LiNi0.5-zAl z Mn0.5O2 (z = 0.00, 0.03, 0.05, 0.08) decreasing slowly with increasing Al content.

Keywords

Lithium-ion battery LiNi0.5Mn0.5O2 cathode material Al-doping High-voltage Structural changes 

Notes

Funding information

This work was supported by the Natural Science Foundation of China (U1507106 and U1507114), the Natural Science Foundation of Qinghai Province (2016-GX-101), the Hunan Provincial Science and Technology Plan Project (Nos. 2016TP1007 and 2017TP1001), the Hunan Provincial Science and Technology Plan Project (No. 2016TP1007).

Supplementary material

11581_2018_2553_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2235 kb)

References

  1. 1.
    Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, co) electrodes for lithium-ion batteries. J Mater Chem 17(30):3112–3125CrossRefGoogle Scholar
  2. 2.
    Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode LiNi0.2Li0.2Mn0.6O2. J Am Chem Soc 128(26):8694–8698CrossRefGoogle Scholar
  3. 3.
    Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) COMPARATIVE-STUDY OF LICOO2, LINI1/2CO1/2O2 AND LINIO2 FOR 4-VOLT SECONDARY LITHIUM CELLS. Electrochim Acta 38(9):1159–1167CrossRefGoogle Scholar
  4. 4.
    Kong JZ, Ren C, Jiang YX, Zhou F, Yu C, Tang WP, Li H, Ye SY, Li JX (2016) Li-ion-conductive Li2TiO3-coated li Li0.2Mn0.51Ni0.19Co0.1O2 for high-performance cathode material in lithium-ion battery. J Solid State Electrochem 20(5):1435–1443CrossRefGoogle Scholar
  5. 5.
    Kim JK, Manthiram A (1997) A manganese oxyiodide cathode for rechargeable lithium batteries. Nature 390(6657):265–267CrossRefGoogle Scholar
  6. 6.
    Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381(6582):499–500CrossRefGoogle Scholar
  7. 7.
    Alessandrini F, Conte M, Passerini S, Prosini PP (2001) Overview of ENEA's projects on lithium batteries. J Power Sources 97-8:768–771CrossRefGoogle Scholar
  8. 8.
    Brandt K (1995) PRACTICAL BATTERIES BASED ON THE SWING SYSTEM. J Power Sources 54(1):151–154CrossRefGoogle Scholar
  9. 9.
    Huang HT, Bruce PG (1994) A 4V lithium manganese oxide cathode for rocking-chair lithium-ion cells. J Electrochem Soc 141(9):L106–L107CrossRefGoogle Scholar
  10. 10.
    Shpak AY, Swamy SKK, Dittmer J, Vlasenko NY, Globa NI, Andriiko AA (2016) Formation of stable phases of the li-Mn-co oxide system at 800 a degrees C under ambient oxygen pressure. J Solid State Electrochem 20(1):87–94CrossRefGoogle Scholar
  11. 11.
    Ganesh KS, Reddy BP, Kumar PJ, Jayanthbabu K, Rosaiah P, Hussain OM (2015) Microstructural and electrochemical properties of LiTi (y) co (1-y) O-2 film cathodes prepared by RF sputtering. J Solid State Electrochem 19(12):3621–3627CrossRefGoogle Scholar
  12. 12.
    Li J, Wan L, Cao C (2016) A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres. Electrochim Acta 191:974–979CrossRefGoogle Scholar
  13. 13.
    Liu YM, Cao F, Chen BL, Zhao XZ, Suib SL, Chan HLW, Yuan JK (2012) High performance of LiNi0.5Mn0.5O2 positive electrode boosted by ordered three-dimensional nanostructures. J Power Sources 206:230–235CrossRefGoogle Scholar
  14. 14.
    Liu Y, Chen B, Cao F, Zhao X, Yuan J (2011) Synthesis of nanoarchitectured LiNi0.5Mn0.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route. J Mater Chem 21(28):10437CrossRefGoogle Scholar
  15. 15.
    Mizuno F, Hayashi A, Tadanaga K (2003) All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material. J Power Sources 124(1):170–173CrossRefGoogle Scholar
  16. 16.
    Labrini M, Saadoune I, Scheiba F, Almaggoussi A, Elhaskouri J, Amoros P, Ehrenberg H, Brotz J (2013) Magnetic and structural approach for understanding the electrochemical behavior of LiNi0.33Co0.33Mn0.33O2 positive electrode material. Electrochim Acta 111:567–574CrossRefGoogle Scholar
  17. 17.
    Singh G, Thomas R, Kumar A, Katiyar RS (2012) Electrochemical behavior of Cr- doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. J Electrochem Soc 159(4):A410CrossRefGoogle Scholar
  18. 18.
    Zhao E, Chen M, Chen D, Xiao X, Hu Z (2015) A versatile coating strategy to highly improve the electrochemical properties of layered oxide LiMO(2) (M = Ni0.5Mn0.5 and Ni1/3Mn1/3Co1/3). ACS Appl Mater Interfaces 7(49):27096–27105CrossRefGoogle Scholar
  19. 19.
    Peng C, Jin J, Chen GZ (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53(2):525–537CrossRefGoogle Scholar
  20. 20.
    Svegl F, Orel B, Grabec-Svegl I, Kaucic V (2000) Characterization of spinel Co3O4 and li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochim Acta 45(25–26):4359–4371CrossRefGoogle Scholar
  21. 21.
    Zhang X, Jiang WJ, Mauger A, Qilu GF, Julien CM (2010) Minimization of the cation mixing in Li1-x(NMC)(1-x)O-2 as cathode material. J Power Sources 195(5):1292–1301CrossRefGoogle Scholar
  22. 22.
    Reale P, Privitera D, Panero S, Scrosati B (2007) An investigation on the effect of li+/Ni2+ cation mixing on electrochemical performances and analysis of the electron conductivity properties of LiCo0.33Mn0.33M0.33O2. Solid State Ionics 178(23–24):1390–1397CrossRefGoogle Scholar
  23. 23.
    Okamoto K, Shizuka K, Akai T, Tamaki Y, Okahara K, Nomura M (2006) X-ray absorption fine structure study on layered LiMO2 (M = Ni, Mn, co) cathode materials. J Electrochem Soc 153(6):A1120–A1127CrossRefGoogle Scholar
  24. 24.
    Zhao EY, Chen MM, Hu ZB, Xiao XL, Chen DF (2016) Layered/layered Homostyructure ion conductor coating strategy for high performance Lithium ion batteries. Electrochim Acta 208:64–70CrossRefGoogle Scholar
  25. 25.
    Dou SM, Wang WL, Li HJ, Xin XD (2011) Synthesis and electrochemical performance of LiNi0.475Mn0.475Al0.05O2 as cathode material for lithium-ion battery from Ni-Mn-Al-O precursor. J Solid State Electrochem 15(4):747–751CrossRefGoogle Scholar
  26. 26.
    Yang G, Zhao E, Chen M, Cheng Y, Xue L, Hu Z, Xiao X, Li F (2017) Mg doping improving the cycle stability of LiNi0.5Mn0.5O2 at high voltage. J Solid State ElectrochemGoogle Scholar
  27. 27.
    Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K (2002) Layered li(Ni0.5-xMn0.5-xM '(2x))O-2 (M ' = co, Al, Ti; x = 0, 0.025) cathode materials for li-ion rechargeable batteries. J Power Sources 112(1):41–48CrossRefGoogle Scholar
  28. 28.
    Pan CJ, Lee YJ, Ammundsen B, Grey CP (2002) Li-6 MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem Mater 14(5):2289–2299CrossRefGoogle Scholar
  29. 29.
    Myung ST, Komaba S, Hosoya K, Hirosaki N, Miura Y, Kumagai N (2005) Synthesis of LiNi0.5Mn0.5-xTixO2 by an emulsion drying method and effect of Ti on structure and electrochemical properties. Chem Mater 17(9):2427–2435CrossRefGoogle Scholar
  30. 30.
    Chen M, Zhao E, Chen D, Wu M, Han S, Huang Q, Yang L, Xiao X, Hu Z (2017) Decreasing li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by ca doping. Inorg Chem 56(14):8355–8362CrossRefGoogle Scholar
  31. 31.
    Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J (2016) Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Electrochim Acta 188:48–56CrossRefGoogle Scholar
  32. 32.
    Hu G, Zhang M, Liang L, Peng Z, Du K, Cao Y (2016) Mg–Al–B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage. Electrochim Acta 190:264–275CrossRefGoogle Scholar
  33. 33.
    Han CJ, Eom WS, Lee SM, Cho WI, Jang H (2005) Study of the electrochemical properties of Ga-doped LiNi0.8Co0.2O2 synthesized by a sol–gel method. J Power Sources 144(1):214–219CrossRefGoogle Scholar
  34. 34.
    Li F, Yang G, Jia G, Shangguan X, Zhuge Q, Bai B (2017) Improvement in the electrochemical performance of a LiNi0.5Mn0.5O2 cathode material at high voltage. J Appl ElectrochemGoogle Scholar
  35. 35.
    Kaneda H (2017) Improving the Cycling Performance and Thermal Stability of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Nb-doping and Surface Modification. International J Electrochem Sci :4640–4653Google Scholar
  36. 36.
    Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) New insights into improving rate performance of Lithium-rich cathode material. Adv Mater 27(26):3915–3920CrossRefGoogle Scholar
  37. 37.
    Chen J, Tan X, Liu H, Guo L, Zhang J, Jiang Y, Zhang J, Wang H, Feng X, Chu W (2017) Understanding the underlying mechanism of the enhanced performance of Si doped LiNi0.5Mn0.5-xSixO2 cathode material. Electrochim Acta 228:167–174CrossRefGoogle Scholar
  38. 38.
    Zhang J, Gao R, Sun L, Zhang H, Hu Z, Liu X (2016) Unraveling the multiple effects of Li2ZrO3 coating on the structural and electrochemical performances of LiCoO2 as high-voltage cathode materials. Electrochim Acta 209:102–110CrossRefGoogle Scholar
  39. 39.
    Yang G, Jia G, Shangguan X, Zhu Z, Peng Z, Zhuge Q, Li F, Bai B (2017) The synergistic effects of Li2SiO3-coating and Si4+−doping for LiNi0.5Mn0.5O2 cathode materials on the structure and the electrochemical properties. J Electrochem Soc 164(12):A2889–A2897CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guofeng Jia
    • 1
    • 2
    • 3
  • Suqin Liu
    • 1
    • 4
  • Guowei Yang
    • 2
    • 3
    • 5
  • Faqiang Li
    • 2
    • 3
  • Kang Wu
    • 2
    • 3
    • 5
  • Zhen He
    • 1
    • 4
  • Xuehui Shangguan
    • 2
    • 3
    • 5
  1. 1.College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power SourcesCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake ResourcesQinghai Institute of Salt Lakes, Chinese Academy of SciencesXiningPeople’s Republic of China
  3. 3.Key Laboratory of Salt Lake Resources Chemistry of Qinghai ProvinceXiningPeople’s Republic of China
  4. 4.Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese ResourcesChangshaPeople’s Republic of China
  5. 5.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations