Ionics

pp 1–7 | Cite as

Fabrication and enhanced electrochemical performance of a nitrogen-doped porous graphene/nanometer-sized carbide-derived carbon composite for supercapacitors

  • Pengtao Yan
  • Xuesha Zhang
  • Meiling Hou
  • Ruijun Zhang
  • Kang Liu
  • Ting Liu
  • Yanyan Liu
Original Paper
  • 22 Downloads

Abstract

Herein, we fabricated a nitrogen-doped porous graphene/nanometer-sized carbide-derived carbon (NPG/nCDC) composite. In this architecture, the nCDC with a hierarchical pore structure is used as spacer to inhibit the agglomeration of NPG ensuring the in-plane diffusion paths for electrolyte ions and has contribution to the specific surface area and the pore structure of the composite as well. The nano-sized pores existing on the NPG sheets can provide the cross-plane diffusion paths for electrolyte ions. Furthermore, the nitrogen doping to NPG can further enhance the capacitive performance of the composite. Benefiting from these advantages, the NPG/nCDC composites exhibit outstanding supercapacitive performance. Its specific capacitance is up to 336 F g−1 at 5 mV s−1 in 6 mol L−1 KOH electrolyte, and 99.3% capacitance can be maintained even after 10,000 cycles, demonstrating the great potential as the electrode material for supercapacitors.

Keywords

Porous graphene Carbide-derived carbon N-Doped graphene Carbon composite Supercapacitor 

Supplementary material

11581_2018_2537_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1074 kb)

References

  1. 1.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  2. 2.
    Deng D, Chen N, Xiao X, Du S, Wang Y (2017) Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 23:121–129CrossRefGoogle Scholar
  3. 3.
    Yan P, Xu J, Zhang X, Wu C, Gu Y, Zhang R (2016) Fabrication and enhanced supercapacitive performance of graphene/nano-carbide derived carbon composites. Int J Hydrogen Energ 41:14820–14829CrossRefGoogle Scholar
  4. 4.
    Faraji M (2017) Three-dimensional architectures of graphene oxide-polyaniline nanocomposites synthesized by the pulse reverse electrodeposition technique for supercapacitor applications. Ionics 23:461–469CrossRefGoogle Scholar
  5. 5.
    Wang P, Sun S, Wang S, Zhang Y, Zhang G, Li Y et al (2017) Ultrastable MnO2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor. J Appl Electrochem 48:1–11Google Scholar
  6. 6.
    Chen C, Fan W, Ma T, Fu X (2014) Fabrication of functionalized nitrogen-doped graphene for supercapacitor electrodes. Ionics 20:1489–1494CrossRefGoogle Scholar
  7. 7.
    Gogotsi Y (2014) Energy storage wrapped up. Nature 509:568–570CrossRefGoogle Scholar
  8. 8.
    Zhao C, Ren F, Xue X, Zheng W, Wang X, Chang L (2016) A high-performance asymmetric supercapacitor based on Co(OH)2/graphene and activated carbon electrodes. J Electroanal Chem 782:98–102CrossRefGoogle Scholar
  9. 9.
    Yan P, Xu J, Wu C, Gu Y, Zhang X, Zhang R, Song Y (2016) High-power supercapacitors based on hierarchical porous nanometer-sized silicon carbide-derived carbon. Electrochim Acta 189:16–21CrossRefGoogle Scholar
  10. 10.
    Johra FT, Jung WG (2015) Hydrothermally reduced graphene oxide as a supercapacitor. Appl Surf Sci B 357:1911–1914CrossRefGoogle Scholar
  11. 11.
    Bulusheva LG, Tur VA, Fedorovskaya EO, Asanov IP, Pontiroli D, Riccò M, Okotrub AV (2014) Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites. Carbon 78:137–146CrossRefGoogle Scholar
  12. 12.
    Jiang L, Sheng L, Long C, Fan Z (2015) Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11:471–480CrossRefGoogle Scholar
  13. 13.
    Naderi HR, Norouzi P, Ganjali MR (2016) Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl Surf Sci 366:552–560CrossRefGoogle Scholar
  14. 14.
    Nolan H, Mendoza-Sanchez B, Ashok Kumar N, McEvoy N, O’Brien S, Nicolosi V, Duesberg GS (2014) Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Phys Chem Chem Phys 16:2280–2284CrossRefGoogle Scholar
  15. 15.
    Wang K, Li L, Zhang T, Liu Z (2014) Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 70:612–617CrossRefGoogle Scholar
  16. 16.
    Mostazo-López MJ, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D (2016) Nitrogen doped superporous carbon prepared by a mild method. Enhancement of supercapacitor performance. Int J Hydrogen Energ 41:19691–19701CrossRefGoogle Scholar
  17. 17.
    Wang Q, Yan J, Fan Z (2014) Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors. Electrochim Acta 146:548–555CrossRefGoogle Scholar
  18. 18.
    Jia S, Wang Y, Xin G, Zhou S, Tian P, Zang J (2016) An efficient preparation of N-doped mesoporous carbon derived from milk powder for supercapacitors and fuel cells. Electrochim Acta 196:527–534CrossRefGoogle Scholar
  19. 19.
    Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616CrossRefGoogle Scholar
  20. 20.
    Zeng F, Kuang Y, Zhang N, Huang Z, Pan Y, Hou Z, Zhou H, Yan C, Schmidt OG (2014) Multilayer super-short carbon nanotube/reduced graphene oxide architecture for enhanced supercapacitor properties. J Power Sources 247:396–401CrossRefGoogle Scholar
  21. 21.
    Xu J, Wei X, Cao J, Dong Y, Wang G, Xue Y, Wang W, Chen Z (2015) Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film. Electrochim Acta 152:391–397CrossRefGoogle Scholar
  22. 22.
    Shao Q, Tang J, Lin Y, Li J, Qin F, Zhang K, Yuan J, Qin LC (2015) Ionic liquid modified graphene for supercapacitors with high rate capability. Electrochim Acta 176:1441–1446CrossRefGoogle Scholar
  23. 23.
    Tee E, Tallo I, Kurig H, Thomberg T, Jänes A, Lust E (2015) Huge enhancement of energy storage capacity and power density of supercapacitors based on the carbon dioxide activated microporous SiC-CDC. Electrochim Acta 161:364–370CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pengtao Yan
    • 1
    • 2
  • Xuesha Zhang
    • 1
  • Meiling Hou
    • 2
  • Ruijun Zhang
    • 1
  • Kang Liu
    • 1
  • Ting Liu
    • 1
  • Yanyan Liu
    • 1
  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina
  2. 2.School of Physics and Electronic EngineeringXingtai UniversityXingtaiChina

Personalised recommendations