pp 1–12 | Cite as

Structural and electrical studies of olivine LiNi1 − x(Co0.5Mn0.5) x PO4 (0 ≤ x ≤ 1) at high temperature

  • T. Q. Tan
  • R. A. M. Osman
  • M. V. Reddy
  • Z. Jamal
  • M. S. Idris
Original Paper


A series of olivine-structured of LiNi1 − x(Co0.5Mn0.5) x PO4 (0 ≤ x ≤ 1) compositions have been synthesized by two-step conventional solid-state method at high temperature of 1000 °C followed by slow cooling or quenching. The XRD patterns of the obtained samples confirmed the formation of LiNi1 − x(Co0.5Mn0.5) x PO4 (0 ≤ x ≤ 1) phase with orthorhombic structure, Pmna space group. The lattice parameters determined by Rietveld refinements increase significantly as Co and Mn substitute for Ni. The SEM images show that the sample x = 0.8 started to partially melt while x = 1 has fully melted at temperature 1000 °C. The AC impedance spectroscopy measurements have revealed that the conductivity measured at 300 °C of all the slow-cooled samples can be enhanced by quenching. The quenched sample with x = 0.8 showed the largest increment of conductivities from 3.70 × 10−8 S cm−1 to 1.05 × 10−6 S cm−1 as a function of the cooling condition.


X-ray diffraction (XRD) Rietveld refinement Olivine-structured Electrical conductivity 


Funding information

This study is financially supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme 2014 (FRGS Grant No.: FRGS/1/2014/TK06/UNIMAP/02/5).

Supplementary material

11581_2018_2536_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1.02 kb)


  1. 1.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. CrossRefGoogle Scholar
  2. 2.
    Muraliganth T, Manthiram A (2010) Understanding the shifts in the redox potentials of olivine LiM1-yMyPO4 (M = Fe, Mn, Co, and Mg) solid solution cathodes. J Phys Chem C 114:15530–15540. CrossRefGoogle Scholar
  3. 3.
    Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142:389–390. CrossRefGoogle Scholar
  4. 4.
    Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432. CrossRefGoogle Scholar
  5. 5.
    Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics (Kiel) 18:625–633. CrossRefGoogle Scholar
  6. 6.
    Minakshi M, Singh P, Appadoo D, Martin DE (2011) Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim Acta 56:4356–4360. CrossRefGoogle Scholar
  7. 7.
    Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M=Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723. CrossRefGoogle Scholar
  8. 8.
    Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics (Kiel) 17:201–207. CrossRefGoogle Scholar
  9. 9.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries Bella RS (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69. CrossRefGoogle Scholar
  10. 10.
    Rommel SM, Schall N, Brünig C, Weihrich R (2014) Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatsh Chem Chem Mon 145:385–404. CrossRefGoogle Scholar
  11. 11.
    Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189. CrossRefGoogle Scholar
  12. 12.
    Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152. CrossRefGoogle Scholar
  13. 13.
    Anand K, Ramamurthy B, Veeraiah V, Vijaya Babu K (2017) Effect of magnesium substitution on structural and dielectric properties of LiNiPO4. Mater Sci 35:66–80. Google Scholar
  14. 14.
    Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams—LiNi1-yMgyPO4 composites as possible cathodes materials for 5V applications. Mater Res Bull 48:559–565. CrossRefGoogle Scholar
  15. 15.
    Shu H, Wang X, Wu Q, Hu B, Yang X, Wei Q, Liang Q, Bai Y, Zhou M, Wu C, Chen M, Wang A, Jiang L (2013) Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J Power Sources 237:149–155. CrossRefGoogle Scholar
  16. 16.
    Prabu M, Selvasekarapandian S, Kulkarni AR et al (2012) Influence of europium doping on conductivity of LiNiPO4. Trans Nonferrous Met Soc China 22:342–347. CrossRefGoogle Scholar
  17. 17.
    Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153. CrossRefGoogle Scholar
  18. 18.
    Shanmukaraj D, Murugan R (2004) Synthesis and characterization of LiNiyCo1-yPO4 (y=0–1) cathode materials for lithium secondary batteries. Ionics (Kiel) 10:88–92. CrossRefGoogle Scholar
  19. 19.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Daries Bella RS, Sanjeeviraja C (2014) Structural and electrical studies on Zn2+ doped LiCoPO4. J Electrost 72:181–186. CrossRefGoogle Scholar
  20. 20.
    Tan TQ, Idris MS, Osman RAM, Reddy MV, Chowdari BVR (2015) Structure and electrochemical behaviour of LiNi0.4Mn0.4Co0.2O2 as cathode material for lithium ion batteries. Solid State Ionics 278:43–48. CrossRefGoogle Scholar
  21. 21.
    Tan TQ, Osman RAM, Reddy MV, Khor SF, Idris MS (2017) Structure and electrochemical properties of Zn and Co dual-doped (Li2Co1-xZnxMn3O8) as cathode material for rechargeable lithium-ion batteries. EPJ Web Conf 162:1053. CrossRefGoogle Scholar
  22. 22.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213. CrossRefGoogle Scholar
  23. 23.
    Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos Natl Lab Rep LAUR 748:86–748. Google Scholar
  24. 24.
    Rajammal K, Sivakumar D, Duraisamy N, Ramesh K, Ramesh S (2017) Influences of sintering temperatures and crystallite sizes on electrochemical properties of LiNiPO4 as cathode materials via sol–gel route for lithium ion batteries. J Sol-Gel Sci Technol 83:12–18. CrossRefGoogle Scholar
  25. 25.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. CrossRefGoogle Scholar
  26. 26.
    Murugan AV, Muraliganth T, Ferreira PJ, Manthiram A (2009) Dimensionally modulated, single-crystalline LiMPO4 (M= Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg Chem 48:946–952. CrossRefGoogle Scholar
  27. 27.
    Dinnebier RE (2008) Powder Diffraction. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  28. 28.
    Mote V, Purushotham Y, Dole B (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:6. CrossRefGoogle Scholar
  29. 29.
    Hashem AM, Abdel-Ghany AE, Abuzeid HM, el-Tawil RS, Indris S, Ehrenberg H, Mauger A, Julien CM (2018) EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J Alloys Compd 737:758–766. CrossRefGoogle Scholar
  30. 30.
    Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien CM (2009) Nonstoichiometric LiFePO4: defects and related properties. Chem Mater 21:1636–1644. CrossRefGoogle Scholar
  31. 31.
    Toby BH (2006) R factors in Rietveld analysis: how good is good enough? Powder Diffract 21:67–70. CrossRefGoogle Scholar
  32. 32.
    Jansen E, Schaefer W, Will G (1994) R values in analysis of powder diffraction data using Rietveld refinement. J Appl Crystallogr 27:492–496. CrossRefGoogle Scholar
  33. 33.
    McCusker LB, Von Dreele RB, Cox DE et al (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50. CrossRefGoogle Scholar
  34. 34.
    Idris MS, Osman RAM (2013) Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package. Adv Mater Res 795:479–482. CrossRefGoogle Scholar
  35. 35.
    Rossman GR, Shannon RD, Waring RK (1981) Origin of the yellow color of complex nickel oxides. J Solid State Chem 39:277–287. CrossRefGoogle Scholar
  36. 36.
    Prabu M, Selvasekarapandian S, Reddy MV, Chowdari BVR (2012) Impedance studies on the 5-V cathode material, LiCoPO4. J Solid State Electrochem 16:1833–1839. CrossRefGoogle Scholar
  37. 37.
    Kim S-W, Kim J, Gwon H, Kang K (2009) Phase Stability Study of Li1-xMnPO4 (0≤x≤1) Cathode for Li Rechargeable Battery. J Electrochem Soc 156:A635–A638. CrossRefGoogle Scholar
  38. 38.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Daries Bella RS, Sanjeeviraja C (2015) Influence of metals on the structural, vibrational, and electrical properties of lithium nickel phosphate. Ionics (Kiel) 21:345–357. CrossRefGoogle Scholar
  39. 39.
    Idris MS, West AR (2012) The Effect on cathode performance of oxygen non-stoichiometry and interlayer mixing in layered rock salt LiNi0.8 Mn0.1 Co0.1 O2-δ. J Electrochem Soc 159:A396–A401. CrossRefGoogle Scholar
  40. 40.
    Soo SP, Idris MS, Osman RAM, Rahmat A (2015) The effect of synthesis temperature on interlayer mixing in layered rock salt cathode materials LiNi0.7Mn0.1Co0.2O2 for Li-ion batteries application. Mater Sci Forum 819:155–160. CrossRefGoogle Scholar
  41. 41.
    Idris MS (2013) The existing of oxygen nonstoichiometry in complex lithium oxides. Adv Mater Res 795:438–440. CrossRefGoogle Scholar
  42. 42.
    Wan Mohamed WM, Maulat Osman RA, Idris MS, Khalid N, Mohd Nor NI (2017) Structural and electrical properties of Li2AlMn3O8. EPJ Web Conf 162:1054. CrossRefGoogle Scholar
  43. 43.
    Jonscher AK (1977) The “universal” dielectric response. Nature 267:673–679. CrossRefGoogle Scholar
  44. 44.
    Mauger A, Zaghib K, Gendron F, Julien CM (2008) Small magnetic polaron effect in lithium iron phosphates. Ionics (Kiel) 14:209–214. CrossRefGoogle Scholar
  45. 45.
    Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem Mater 19:3740–3747. CrossRefGoogle Scholar
  46. 46.
    Banday A, Murugavel S (2017) Small polaron hopping conduction mechanism in LiFePO4 glass and crystal. J Appl Phys 121:45111. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • T. Q. Tan
    • 1
    • 2
  • R. A. M. Osman
    • 3
  • M. V. Reddy
    • 4
  • Z. Jamal
    • 3
  • M. S. Idris
    • 1
    • 2
  1. 1.Centre for Frontier Materials ResearchUniversiti Malaysia PerlisKangarMalaysia
  2. 2.School of Materials EngineeringUniversiti Malaysia PerlisArauMalaysia
  3. 3.School of Microelectronics EngineeringUniversiti Malaysia PerlisArauMalaysia
  4. 4.Advanced Batteries Lab, Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations