Skip to main content
Log in

Study of biopolymer I-carrageenan with magnesium perchlorate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The green revolution has led to the study of biopolymer for development of polymer electrolyte for electrochemical devices. Cellulose acetate, pectin, chitosan, and carrageenan are some of the biopolymers. Biopolymer-based membrane for proton conduction and lithium ion conduction have developed and characterized by different techniques. But the study of biopolymer based on Mg2+ ion is rare in literature. So, biopolymer based on I-carrageenan with magnesium has been studied. I-carrageenan biopolymer membrane with different concentration of magnesium perchlorate has been prepared by solution casting technique. Developed biopolymer membrane have been characterized by X-ray diffraction analysis (XRD), FTIR, differential scanning calorimetry (DSC), and AC impedance techniques. Pure I-carrageenan has shown a conductivity value of 5.90 × 10−5 S/cm. I-carrageenan membrane with 0.6 wt% of magnesium perchlorate has shown a conductivity of 2.18 × 10−3 S/cm. A primary Mg2+ ion battery has been constructed and its performance is studied. XRD has been undertaken to study the amorphous/crystalline nature of the sample. I-carrageenan with 0.6 wt% of magnesium membrane has shown highest amorphous nature. FTIR study confirms the complex formation between polymer and salt. AC impedance technique has been used to study the conductivity of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Arof AK, Shuhaimi NEA, Alias NA, Kufian MZ, Majid SR (2010) Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). J Solid State Electrochem 14:2145–2152

    Article  CAS  Google Scholar 

  2. Nur NF, Shyuan LK, Mohamad AB, Kadhum AAH (2013) Review on biopolymer membranes for fuel cell applications. Appl Mech Mater 291–294:614–617

    Google Scholar 

  3. Liang L, Ni R, Yang S, Mao S (2014) Carrageenan and its applications in drug delivery. CarbohydrPolym 103:1–11

    Google Scholar 

  4. Campo VL, Kawano DF, da Silva DB Jr, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180

    Article  CAS  Google Scholar 

  5. Shuhaimi NEA, Alias NA, Majid SR, and Arof AK (2008) Electrical double layer capacitor with proton conducting κ-carrageenan chitosan electrolytes. Funct Mater Lett 1:195–201

    Article  CAS  Google Scholar 

  6. Ng CA, Camacho DH (2015) Polymer electrolyte system based on carrageenan-poly(3,4-ethylenedioxythiophene)(PEDOT)composite for dye sensitized solar cell. IOP Conf Ser: Mater Sci Eng 79:012020. https://doi.org/10.1088/1757-899X/79/1/012020

    Article  CAS  Google Scholar 

  7. Lefnaoui S, Moulai-Mostefa N (2014) Polyelectrolyte complex based on carboxymethyl-kappa-carrageenan and Eudragit RL 30D as prospective carriers for sustained drug delivery. Chem Eng Res Des 97:165–174

    Article  Google Scholar 

  8. Rudhziah S, Rani MSA, Ahmad A, Mohamed NS, and Kaddami H (2015) Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind Crop Prod 72:133–141

    Article  CAS  Google Scholar 

  9. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2017) Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780

    Article  CAS  Google Scholar 

  10. Moniha V, Alagar M, Selvasekarapandian S, Boopathi G (2018) Conductive bio polymer electrolyte iota carrageenan with ammonium nitrate for application in electrochemical devices. Non-Cryst Solids 481:424–434

    Article  CAS  Google Scholar 

  11. Pandey GP, Agrawal RC, Hashmi SA (2011) Magnesium ion conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem 15(10):2253–2264

    Article  CAS  Google Scholar 

  12. Venkata Narayanan NS, Ashok Raj BV, Sampath S (2009) Magnesium ion conducting, room temperature molten electrolytes. Electrochem Commun 11:2027–2031

    Article  CAS  Google Scholar 

  13. Deog Yoo H, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279

    Article  Google Scholar 

  14. Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte. Electrochim Acta 56:3864–3873

    Article  CAS  Google Scholar 

  15. Mangalam R, Thamilselvan M, Selvasekarapandian S, Jayakumar S, Manjuladevi R (2017) Polyvinyl pyrrolidone/Mg(ClO4)2 solid polymer electrolyte: structural and electrical studies. Ionics 23:2837–2843

    Article  CAS  Google Scholar 

  16. Chen J, Peng T, Fan K, Xia J (2011) Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt. J Mater Chem 21:16448–16452

    Article  CAS  Google Scholar 

  17. Agarwalaa S, Thummalakunta LNSA, Cook CA, Peh CKN, Wong ASW, Ke L, Ho GW (2011) Co-existence of LiI and KI in filler free, quasi-solid-state electrolyte for efficient and stable dye sensitized solar cell. J Power Sources 196:1651–1656

    Article  Google Scholar 

  18. Sharma A, Bhat S, Vishnoi T, Nayak V, Kumar A (2013) Three dimensional super macroporous carrageenan-gelatin cryogel matrix for tissue engineering applications. BioMed Res Int. https://doi.org/10.1155/2013/478279

    Google Scholar 

  19. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM (2012) LiClO4 salt concentration effect on the properties of PVC-modified low molecular weight LENR50-based solid polymer electrolyte. J Appl Polym Sci 124:2227–2233

    Article  CAS  Google Scholar 

  20. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semi crystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  21. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Premalatha M (2017) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2697–2706

    Article  CAS  Google Scholar 

  22. Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA (2012) Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll 29:280–289

    Article  CAS  Google Scholar 

  23. Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23(7):1903–1909

    Article  CAS  Google Scholar 

  24. Mishra R, Baskaran N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112(3):261–273

    Article  CAS  Google Scholar 

  25. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). EurPolym J 42(10):2672–2677

    CAS  Google Scholar 

  26. Kim C, Lee G, Liou K, Ryu KS, Kang SG, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 123:251–257

    Article  CAS  Google Scholar 

  27. Subba Reddy CV, Han X, Zhu Q-Y, Mai L-Q, Chen W (2006) Conductivity and discharge characteristics of (PVC + NaClO4) polymer electrolyte systems. Eur Polym J 42:3114–3120

    Article  Google Scholar 

  28. Selvalakshmi S, Vijaya N, Selvasekarapandian S and PremalathaM (2016) Biopolymer agar-agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci. https://doi.org/10.1002/APP.44702

  29. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, and Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100

    Article  CAS  Google Scholar 

  30. PaGcalsu V, Popescu V, Popescu GL, Dudescu MC, Borodi G, Dinescu AM, Moldovan M (2013) Obtaining and characterizing alginate/k-carrageenan hydrogel cross-linked with adipic dihydrazide. Adv Mater Sci Eng 2013:1–12

    Google Scholar 

  31. Vijaya N, Selvasekarapandian S, Hirankumar G, Karthikeyan S, Nithya H, Ramya CS, Prabu M (2012) Structural, vibrational, thermal, and conductivity studies on proton-conducting polymer electrolyte based on poly (N-vinylpyrrolidone). Ionics 18:91–99

    Article  CAS  Google Scholar 

  32. Lanfredi S, Saia PS, Lebullenger R, andHernandes AC (2002) Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy. Solid State Ionics 146(3):329–339

    Article  CAS  Google Scholar 

  33. Prado-Fernandez J, Rodriguez-Vazquez JA, Tojo E, Andrade JM (2003) JM quantitation of κ-, ι- and λ-carrageenans by mid infrared spectroscopy and PLS regression. Anal Chim Acta 480:23–37

    Article  CAS  Google Scholar 

  34. Rochas C, Lahaye M, Yaphe W (1986) Sulfate content of carrageenan and agar determined by infrared spectroscopy. Bot Mar 29:335–340

    Article  CAS  Google Scholar 

  35. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Impedance study of (PEO) 10 LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836

    Article  CAS  Google Scholar 

  36. Adachi K, Urakawa O (2002) Dielectric study of concentration fluctuations in concentrated polymer solutions. J. Non-Cryst Solids 667:307–310

    Google Scholar 

  37. Monisha S, Selvasekarapandian S, Mathavan T, Benial MF, Manoharan S, Karthikeyan S (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci Mater Electron 27:9314–9324

    Article  CAS  Google Scholar 

  38. Ramesh S and Arof AK (2001) Ionic conductivity studies of plasticized poly(vinylchloride)polymer electrolytes. Mater Sci Eng B 85:11–15

    Article  Google Scholar 

  39. Kumar GG, Munichandraiah N (2002) Poly (methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta 47(7):1013–1022

    Article  CAS  Google Scholar 

  40. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Christopher Selvin P, Mangalam R, Monisha S (2017) Preparation and characterization of blend polymer electrolyte film based on poly(vinyl alcohol)-poly(acrylonitrile)/MgCl2 for energy storage devices. Ionics. https://doi.org/10.1007/s11581-017-2273-9

    Article  Google Scholar 

  41. Jumaah FN, Mobaraka NN, Ahmad A, Ramli N (2013) Characterization of Ų-carrageenan and its derivative based green polymer electrolytes. AIP Conf Proc 1571:768

    Article  CAS  Google Scholar 

  42. Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N (2015) Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett 10:302

    Article  Google Scholar 

  43. Brychcy E, Malik M, Drożdżewski P, Król Ż, Jarmoluk A (2015) Physicochemical and antibacterial properties of carrageenan and gelatine hydrosols and hydrogels incorporated with acidic electrolyzed water. Polymers 7(12):2638–2649

    Article  CAS  Google Scholar 

  44. Ramasamy Indumathy, Perunninakulath S, Parameswaran, Aiswarya CV, UnniNair B (2014) Bibenzimidazole containing mixed ligand cobalt(III) complex as a selective receptor for iodide. Polyhedron 75:22–29

    Article  Google Scholar 

  45. Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24(8):1253–1294

    Article  CAS  Google Scholar 

  46. Chopin T, Whalen E (1993) A new and rapid method for carrageenan identification by FTIR diffuse reflectance spectroscopy directly on dried, ground algal material. Carbohydr Res Res 246:51–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmuga Priya, S., Karthika, M., Selvasekarapandian, S. et al. Study of biopolymer I-carrageenan with magnesium perchlorate. Ionics 24, 3861–3875 (2018). https://doi.org/10.1007/s11581-018-2535-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2535-1

Keywords

Navigation