Advertisement

Ionics

pp 1–9 | Cite as

Electrosprayed NiCo2O4 nanoparticles for long cycle life and high-power Li-ion battery anode

  • Maria Benny
  • Binitha Gangaja
  • Shantikumar Nair
  • Dhamodaran Santhanagopalan
Original Paper
  • 46 Downloads

Abstract

Electrospraying-based synthesis of NiCo2O4 (NCO-ES) nanoparticles that exhibit long cycle life and high rate capability is reported. The results are compared with a conventionally prepared NiCo2O4 sample by direct annealing (NCO-DA). The structure and morphology of NCO-ES and NCO-DA nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy to confirm the size, morphology, structure, and surface chemistry of the as-prepared samples. Electrochemical testing established that the NCO-ES sample displayed enhanced Li-ion storage performance. The NCO-ES delivered a discharge capacity of almost 370 mAh/g at the end of 50 cycles at 1C rate (890 mA/g) while only 180 mAh/g was retained for the NCO-DA sample at the same condition. At a high rate of 5C (4450 mA/g), NCO-ES electrodes delivered a stabilized specific capacity of 225 mAh/g with almost 100% Coulombic efficiency over 1000 cycles. Its rate capability and cycle life were found to be superior to NCO-DA electrodes. The nanoscale grain boundaries in the NCO-ES sample enhanced the lithium-ion diffusion and enabled high rate capability. The impedance analysis at different stages of lithiation/delithiation indicates a lower impedance and better kinetics as one of the reasons for better performance of the NCO-ES sample.

Keywords

Anodes Li-ion batteries Spinels Materials preparation 

Notes

Acknowledgements

DS is thankful to the Science and Engineering Research Board, Govt. of India, for the award of Ramanujan Fellowship (Ref: SB/S2/RJN-100/2014). One of the authors (MB) acknowledges the Department of Science and Technology, Government of India, for providing financial assistance under the M. Tech project grant PG Training Programs (M. Tech Nanomedical Science) SR/NM/PG-01/2015. The authors thank Amrita Vishwa Vidyapeetham for infrastructural support.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary material

11581_2018_2520_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1274 kb)

References

  1. 1.
    Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176.  https://doi.org/10.1021/ja3091438 CrossRefGoogle Scholar
  2. 2.
    Haridas AH, Gangaja B, Srikrishnarka P, Unni GE, Nair AS, Nair SV, Santhanagopalan D (2017) Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications. J Power Sources 345:50–58.  https://doi.org/10.1016/j.jpowsour.2017.01.136 CrossRefGoogle Scholar
  3. 3.
    Litao Y, Liu J, Xu X, Zhang L, Hu R, Liu J, Ouyang L, Yang L, Zhu M (2017) Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 11:5120–5129.  https://doi.org/10.1021/acsnano.7b02136 CrossRefGoogle Scholar
  4. 4.
    Wang Z, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24:1903–1911.  https://doi.org/10.1002/adma.201200469 CrossRefGoogle Scholar
  5. 5.
    Xijun X, Liu J, Liu Z, Shen J, Hu R, Liu J, Ouyang L, Zhang L, Zhu M (2017) Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 11:9033–9040.  https://doi.org/10.1021/acsnano.7b03530 CrossRefGoogle Scholar
  6. 6.
    Jun L, Xu X, Hu R, Yang L, Zhu M (2016) Uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes. Adv Energy Mater 6(13):1600256.  https://doi.org/10.1002/aenm.201600256 CrossRefGoogle Scholar
  7. 7.
    Gangaja B, Chandrasekharan S, Vadukumpully S, Nair SV, Santhanagopalan D (2017) Surface chemical analysis of CuO nanofiber composite electrodes at different stages of lithiation/delithiation. J Power Sources 340:356–364.  https://doi.org/10.1016/j.jpowsour.2016.11.087 CrossRefGoogle Scholar
  8. 8.
    Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270.  https://doi.org/10.1021/nl0725906 CrossRefGoogle Scholar
  9. 9.
    Wu F, Bai J, Feng J, Xiong S (2015) Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries. Nano 7:17211–17230.  https://doi.org/10.1039/C5NR04791A Google Scholar
  10. 10.
    Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2007) Lithium recycling behaviour of nano-phase CuCo2O4 as anode for lithium-ion batteries. J Power Sources 173:495–501.  https://doi.org/10.1016/j.jpowsour.2007.06.022 CrossRefGoogle Scholar
  11. 11.
    Shi W, Zhao H, Lu B (2017) Core-shell ZnCo2O4@TiO2 nanowall arrays as anodes for lithium ion batteries. Nanotechnology 28:165403.  https://doi.org/10.1088/1361-6528/aa6291 CrossRefGoogle Scholar
  12. 12.
    Li Y, Wu X (2017) Fabrication of urchin-like NiCo2O4 microspheres assembled by using SDS as soft template for anode materials of lithium-ion batteries. Ionics.  https://doi.org/10.1007/s11581-017-2291-7
  13. 13.
    Li YG, Hasin P, Wu YY (2010) NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater 22:1926–1929CrossRefGoogle Scholar
  14. 14.
    Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542.  https://doi.org/10.1039/C2NR11966H CrossRefGoogle Scholar
  15. 15.
    Li J, Yao W, Martin S, Vaknin D (2008) Lithium ion conductivity in single crystal LiFePO4. Solid State Ionics 179:2016–2019.  https://doi.org/10.1016/j.ssi.2008.06.028 CrossRefGoogle Scholar
  16. 16.
    Nair AS, Shengyuan Y, Peininga Z, Ramakrishna S (2010) Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cells. Chem Commun 46:7421–7423.  https://doi.org/10.1039/C0CC01490G CrossRefGoogle Scholar
  17. 17.
    Wang J, Fan S, Luan Y, Tang J, Jin Z, Yang M, Lu Y (2015) Ultrathin mesoporous NiCo2O4 nanosheets as an efficient and reusable catalyst for benzylic oxidation. RSC Adv 5:2405–2410.  https://doi.org/10.1039/C4RA11972J CrossRefGoogle Scholar
  18. 18.
    Choudhury T, Saied SO, Sullivan JL, Abbot AM (1989) Reduction of oxides of iron, cobalt, titanium and niobium by low energy ion bombardment. J Phys D Appl Phys 22(8):1185–1195.  https://doi.org/10.1088/0022-3727/22/8/026 CrossRefGoogle Scholar
  19. 19.
    Cheng J, Lu Y, Qiu K, Yan H, Xu J, Han L, Liu X, Luo J, Kim J, Luo Y (2015) Hierarchical core/shell NiCo2O4@NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and Li-ion batteries. Sci Rep 5:12099.  https://doi.org/10.1038/srep12099 CrossRefGoogle Scholar
  20. 20.
    Li JF, Xiong SL, Liu Y, Ju Z, Qian YT (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5(3):981–988.  https://doi.org/10.1021/am3026294 CrossRefGoogle Scholar
  21. 21.
    Liu L, Li Y, Yuan SM, Ge M, Ren MM, Sun CS, Zhou Z (2010) Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J Phys Chem C 114(1):251–255.  https://doi.org/10.1021/jp909014w CrossRefGoogle Scholar
  22. 22.
    Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485.  https://doi.org/10.1007/s12274-012-0233-2 CrossRefGoogle Scholar
  23. 23.
    Xiong SL, Chen JS, Loo XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH) 0.11H2O and their lithium-storage properties. Adv Funct Mater 22:861–871.  https://doi.org/10.1002/adfm.201102192 CrossRefGoogle Scholar
  24. 24.
    Sun Y, Zuo X, Xu D, Sun D, Zhang X, Zeng S (2016) Flower-like NiCo2O4 microstructures as promising anode material for high performance lithium-ion batteries: facile synthesis and its lithium storage properties. Chem Select 1:5129–5136.  https://doi.org/10.1002/slct.201601147 Google Scholar
  25. 25.
    Chen Y, Zhuo M, Deng J, Xu Z, Li Q, Wang T (2014) Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo2O4 nanoplates for lithium-ion batteries. J Mater Chem A 2:4449–4456.  https://doi.org/10.1039/C3TA14624C CrossRefGoogle Scholar
  26. 26.
    Gao G, Wu HB, Lou XWD (2014) Citrate-assisted growth of NiCo2O4 nanosheets on reduced graphene oxide for highly reversible lithium storage. Adv Energy Mater 4(1400422).  https://doi.org/10.1002/aenm.201400422
  27. 27.
    Pu J, Liu Z, Ma Z, Wang J, Zhang L, Chang S, Wu W, Shen Z, Zhang H (2016) Structure design of NiCo2O4 electrodes for high performance pseudocapacitors and lithium-ion batteries. J Mater Chem A 4:17394–17402.  https://doi.org/10.1039/C6TA08198C CrossRefGoogle Scholar
  28. 28.
    Zhang C, Yu J–S (2016) Morphology-tuned synthesis of NiCo2O4-coated 3D graphene architectures used as binder-free electrodes for lithium-ion batteries. Chem Eur J 22:4422–4430.  https://doi.org/10.1002/chem.201504386 CrossRefGoogle Scholar
  29. 29.
    Li T, Li X, Wang Z, Guo H, Li Y (2015) A novel NiCo2O4 anode morphology for lithium ion batteries. J Mater Chem A 3:11970–11975.  https://doi.org/10.1039/C5TA01928A CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Benny
    • 1
  • Binitha Gangaja
    • 1
  • Shantikumar Nair
    • 1
  • Dhamodaran Santhanagopalan
    • 1
  1. 1.Centre for Nanosciences and Molecular MedicineAmrita Vishwa VidyapeethamKochiIndia

Personalised recommendations