Skip to main content
Log in

Graphene-decorated sphere Li2S composite prepared by spray drying method as cathode for lithium-sulfur full cell

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a graphene-decorated Li2S cathode has been prepared via spray drying method using Li2SO4, graphene oxide and sucrose as raw materials. During spray drying, sucrose melts and embeds Li2SO4 when Li2SO4 were sprayed out with graphene oxide and sucrose, and becomes sphere particles. The as-prepared Li2S composite was received after a heat treatment under nitrogen atmosphere. X-ray diffraction patterns confirm the cubic structure of Li2S and scanning electron microscope images reveal that Li2S and carbon components stay in sphere structure with diameter around 20 μm. The sphere Li2S composite shows enhanced performance when acts as cathode. Under current density of 100 mA g−1, a specific discharge capacity of 778 mAh g−1 has been achieved and the battery cycled over 60 rounds. Furtherly, the sphere composite was coupled with silicon/graphite anode to construct full cell system, suggesting large possibility to work with the current lithium-ion battery anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 92:41–63. https://doi.org/10.1016/j.carbon.2015.03.008

    Article  CAS  Google Scholar 

  2. Zu C, Li L, Qie L, Manthiram A (2015) Expandable-graphite-derived graphene for next-generation battery chemistries. J Power Sources 284:60–67. https://doi.org/10.1016/j.jpowsour.2015.03.009

    Article  CAS  Google Scholar 

  3. Zu C, Klein M, Manthiram A (2014) Activated Li2S as a high-performance cathode for rechargeable lithium-sulfur batteries. The Journal of Physical Chemistry Letters 5(22):3986–3991. https://doi.org/10.1021/jz5021108

    Article  CAS  PubMed  Google Scholar 

  4. Zhong Y, Wang S, Sha Y, Liu M, Cai R, Li L, Shao Z (2016) Trapping sulfur in hierarchically porous, hollow indented carbon spheres: a high-performance cathode for lithium-sulfur batteries. J Mater Chem A 4(24):9526–9535. https://doi.org/10.1039/c6ta03187k

    Article  CAS  Google Scholar 

  5. Du Z, Xu J, Jin S, Shi Y, Guo C, Kong X, Zhu Y, Ji H (2017) The correlation between carbon structures and electrochemical properties of sulfur/carbon composites for Li-S batteries. J Power Sources 341:139–146. https://doi.org/10.1016/j.jpowsour.2016.11.102

    Article  CAS  Google Scholar 

  6. Wang X, Gao Y, Wang J, Wang Z, Chen L (2015) Chemical adsorption: another way to anchor polysulfides. Nano Energy 12:810–815. https://doi.org/10.1016/j.nanoen.2014.12.002

    Article  CAS  Google Scholar 

  7. Carbone L, Hassoun J (2016) A low-cost, high-energy polymer lithium-sulfur cell using a composite electrode and polyethylene oxide (PEO) electrolyte. Ionics 22(12):2341–2346. https://doi.org/10.1007/s11581-016-1755-5

    Article  CAS  Google Scholar 

  8. Lacey MJ, Jeschull F, Edström K, Brandell D (2014) Functional, water-soluble binders for improved capacity and stability of lithium-sulfur batteries. J Power Sources 264:8–14. https://doi.org/10.1016/j.jpowsour.2014.04.090

    Article  CAS  Google Scholar 

  9. Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7(7):2071. https://doi.org/10.1039/c4ee00517a

    Article  CAS  Google Scholar 

  10. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162. https://doi.org/10.1016/j.jpowsour.2012.12.102

    Article  CAS  Google Scholar 

  11. Barchasz C, Leprêtre J-C, Alloin F, Patoux S (2012) New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources 199:322–330. https://doi.org/10.1016/j.jpowsour.2011.07.021

    Article  CAS  Google Scholar 

  12. Zheng J, Gu M, Wang C, Zuo P, Koech PK, Zhang JG, Liu J, Xiao J (2013) Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries. J Electrochem Soc 160(11):A1992–A1996. https://doi.org/10.1149/2.032311jes

    Article  CAS  Google Scholar 

  13. Zhang SS (2013) Does the sulfur cathode require good mixing for a liquid electrolyte lithium/sulfur cell? Electrochem Commun 31:10–12. https://doi.org/10.1016/j.elecom.2013.02.021

    Article  CAS  Google Scholar 

  14. Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G (2017) A conductive molecular framework derived Li2S/N,P-codoped carbon cathode for advanced lithium-sulfur batteries. Adv Energy Mater 7:1602876. https://doi.org/10.1002/aenm.201602876

    Article  CAS  Google Scholar 

  15. Mukkabla R, Meduri P, Deepa M, Ghosal P (2016) Durable Li-S batteries with nano-sulfur/graphite nanoplatelets composites. Chem Eng J 303:369–383. https://doi.org/10.1016/j.cej.2016.05.146

    Article  CAS  Google Scholar 

  16. Chen M, Jiang S, Cai S, Wang X, Xiang K, Ma Z, Song P, Fisher AC (2017) Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium-sulfur batteries. Chem Eng J 313:404–414. https://doi.org/10.1016/j.cej.2016.12.081

    Article  CAS  Google Scholar 

  17. Dong Y, He R-T, Fan L-Z (2017) Graphene and polydopamine double-wrapped porous carbon-sulfur cathode materials for lithium-sulfur batteries with high capacity and cycling stability. Ionics 23(12):3329–3337. https://doi.org/10.1007/s11581-017-2138-2

    Article  CAS  Google Scholar 

  18. Chen L, Shaw LL (2014) Recent advances in lithium-sulfur batteries. J Power Sources 267:770–783. https://doi.org/10.1016/j.jpowsour.2014.05.111

    Article  CAS  Google Scholar 

  19. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem 52(50):13186–13200. https://doi.org/10.1002/anie.201304762

    Article  CAS  Google Scholar 

  20. Yan B, Li X, Bai Z, Song X, Xiong D, Zhao M, Li D, Lu S (2017) A review of atomic layer deposition providing high performance lithium sulfur batteries. J Power Sources 338:34–48. https://doi.org/10.1016/j.jpowsour.2016.10.097

    Article  CAS  Google Scholar 

  21. Zheng Z, Guo H, Pei F, Zhang X, Chen X, Fang X, Wang T, Zheng N (2016) High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv Funct Mater 26(48):8952–8959. https://doi.org/10.1002/adfm.201601897

    Article  CAS  Google Scholar 

  22. Xu N, Qian T, Liu X, Liu J, Chen Y, Yan C (2017) Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett 17(1):538–543. https://doi.org/10.1021/acs.nanolett.6b04610

    Article  CAS  PubMed  Google Scholar 

  23. Strubel P, Althues H, Kaskel S (2016) Zinc-salt templating of hierarchical porous carbons for low electrolyte high energy lithium-sulfur batteries (LE-LiS). Carbon 107:705–710. https://doi.org/10.1016/j.carbon.2016.06.075

    Article  CAS  Google Scholar 

  24. Li L, Zhou G, Yin L, Koratkar N, Li F, Cheng H-M (2016) Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries. Carbon 108:120–126. https://doi.org/10.1016/j.carbon.2016.07.008

    Article  CAS  Google Scholar 

  25. Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481. https://doi.org/10.1038/ncomms2513

    Article  CAS  PubMed  Google Scholar 

  26. Shin ES, Kim K, Oh SH, Cho WI (2013) Polysulfide dissolution control: the common ion effect. Chem Commun 49(20):2004–2006. https://doi.org/10.1039/c2cc36986a

    Article  CAS  Google Scholar 

  27. Zhang S (2012) Improved cyclability of liquid electrolyte lithium/sulfur batteries by optimizing electrolyte/sulfur ratio. Energies 5(12):5190–5197. https://doi.org/10.3390/en5125190

    Article  CAS  Google Scholar 

  28. Zheng J, Lv D, Gu M, Wang C, Zhang JG, Liu J, Xiao J (2013) How to obtain reproducible results for lithium sulfur batteries? J Electrochem Soc 160(11):A2288–A2292. https://doi.org/10.1149/2.106311jes

    Article  CAS  Google Scholar 

  29. Fang X, Peng H (2015) A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small 11(13):1488–1511. https://doi.org/10.1002/smll.201402354

    Article  CAS  PubMed  Google Scholar 

  30. Kim HS, Jeong T-G, Choi N-S, Kim Y-T (2013) The cycling performances of lithium-sulfur batteries in TEGDME/DOL containing LiNO3 additive. Ionics 19(12):1795–1802. https://doi.org/10.1007/s11581-013-0943-9

    Article  CAS  Google Scholar 

  31. Hassoun J, Kim J, Lee D-J, Jung H-G, Lee S-M, Sun Y-K, Scrosati B (2012) A contribution to the progress of high energy batteries: a metal-free, lithium-ion, silicon-sulfur battery. J Power Sources 202:308–313. https://doi.org/10.1016/j.jpowsour.2011.11.060

    Article  CAS  Google Scholar 

  32. Shen C, Ge M, Zhang A, Fang X, Liu Y, Rong J, Zhou C (2016) Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy 19:68–77. https://doi.org/10.1016/j.nanoen.2015.11.013

    Article  CAS  Google Scholar 

  33. He J, Chen Y, Lv W, Wen K, Li P, Qi F, Wang Z, Zhang W, Li Y, Qin W, He W (2016) Highly-flexible 3D Li2S/graphene cathode for high-performance lithium sulfur batteries. J Power Sources 327:474–480. https://doi.org/10.1016/j.jpowsour.2016.07.088

    Article  CAS  Google Scholar 

  34. Sun D, Hwa Y, Shen Y, Huang Y, Cairns EJ (2016) Li2S nano spheres anchored to single-layered graphene as a high-performance cathode material for lithium/sulfur cells. Nano Energy 26:524–532. https://doi.org/10.1016/j.nanoen.2016.05.033

    Article  CAS  Google Scholar 

  35. Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491. https://doi.org/10.1021/nl100504q

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi T, Sakaebe H, Kageyama H, Senoh H, Sakai T, Tatsumi K (2010) Preparation of electrochemically active lithium sulfide-carbon composites using spark-plasma-sintering process. J Power Sources 195(9):2928–2934. https://doi.org/10.1016/j.jpowsour.2009.11.011

    Article  CAS  Google Scholar 

  37. Noh H, Song J, Park J-K, Kim H-T (2015) A new insight on capacity fading of lithium-sulfur batteries: the effect of Li2S phase structure. J Power Sources 293:329–335. https://doi.org/10.1016/j.jpowsour.2015.05.072

    Article  CAS  Google Scholar 

  38. Jin H, Gu M, Ji S, Xu X, Liu J (2016) Reduced graphene oxide anchored tin sulfide hierarchical microspheres with superior Li-ion storage performance. Ionics 22(10):1811–1818. https://doi.org/10.1007/s11581-016-1712-3

    Article  CAS  Google Scholar 

  39. Li Q, Xu P, Zhang B, Tsai H, Wang J, Wang H-L, Wu G (2013) One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries. Chem Commun 49:10838–10840. https://doi.org/10.1039/C3CC46441E

    Article  CAS  Google Scholar 

  40. Bertheville B, Bill H, Hagemann H (1998) Experimental Raman scattering investigation of phonon anharmonicity effects in Li2S. J Phys Condens Matter 10:2155–2169. https://doi.org/10.1088/0953-8984/10/9/018

    Article  CAS  Google Scholar 

  41. Li Z, Zhang S, Zhang C, Ueno K, Yasuda T, Tatara R, Dokko K, Watanabe M (2015) One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li2S/graphene composite for lithium-sulfur batteries. Nano 7(34):14385–14392. https://doi.org/10.1039/c5nr03201f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the union project of the National Natural Science Foundation of China and Guangdong Province (U1601214), the Natural Science Foundation of Guangdong Province (2017A030310166), the Scientific and Technological Plan of Guangdong Province (2016A050503040, 2016B010114002, and 2017B090901027), the Scientific and Technological Plan of Guangzhou City (201607010322, 201607010274), the LanDun information security technology open fund (LD20170210), and the Innovation Project of the Graduate School of South China Normal University (20161217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhua Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, H., Zhong, Z. et al. Graphene-decorated sphere Li2S composite prepared by spray drying method as cathode for lithium-sulfur full cell. Ionics 24, 3385–3392 (2018). https://doi.org/10.1007/s11581-018-2493-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2493-7

Keywords

Navigation