Advertisement

Ionics

pp 1–13 | Cite as

Development of rice straw black liquor based porous carbon-poly(aniline-co-methoxy aniline) as supporting for electrochemical performances of alcohol oxidations

  • Selvaraj Vaithilingam
  • Thamil Magal Ramanujam
Original Papers
  • 57 Downloads

Abstract

The present work had attempted to develop rice straw black liquor based porous carbon-poly (aniline-co-methoxy aniline) composite added catalysts for alcohol oxidation. In this aspect, nanoparticles of platinum-iridium and platinum were deposited on poly(aniline-co-methoxy aniline)-rice straw black liquor based porous carbon (Poly(Ani-co-MAni)-RSBLPC) composite. The electrochemical test has been carried out using Pt-Ir/Poly(Ani-co-MAni)-RSBLPC and Pt/Poly(Ani-co-MAni)-RSBLPC electrocatalysts in an alkaline solution of methanol, ethylene glycol, and glycerol. For comparison, the electrochemical performance test is also done using Pt/Poly(Ani-co-MAni) and Pt/RSBLPC catalysts in basic solution of methanol. From electrochemical studies, it was noticed that platinum nanoparticles decorated Poly(Ani-co-MAni)-RSBLPC reveals a significant enhancement towards the oxidation of methanol in comparison with Pt/Poly(Ani-co-MAni) and Pt/RSBLPC catalysts, which will be expected from the synergic effect of rice straw black liquor based porous carbon and conductive polymer material. Furthermore, the bimetallic Pt-Ir/Poly(Ani-co-MAni)-RSBLPC catalyst showed enhanced catalytic activity in comparison with monometallic Pt/Poly(Ani-co-MAni)-RSBLPC catalyst. The above results suggested that Poly(Ani-co-MAni)-RSBLPC composite is a potent support and could be used as a potent low cost support for catalyst deposition towards fuel cell industries that include the applications of sensor and super capacitor.

Keywords

Platinum Platinum-iridium Poly(Ani-co-MAni)-RSBLPC Electrooxidation Alcohol 

Notes

Funding information

The authors like to thank DST/Nanomission, New Delhi, India, for the financial support to carry out this work and the establishment of Nanotech Research Lab through the grant No. SR/NM/NS-05/2011(G).

References

  1. 1.
    Gupta SS, Datta J (2005) An investigation into the electroooxidation of ethanol and 2-propanol for application in direct alcohol fuel cells. J Chem Sci 117:337–344CrossRefGoogle Scholar
  2. 2.
    Li L, Xing Y (2009) Methanol electrooxidation on Pt-Ru alloy nanoparticles supported on carbon nanotubes. Energies 2:789–804CrossRefGoogle Scholar
  3. 3.
    Selvaraj V, Alagar M, Hamerton I (2006) Electrocatalytic properties of monometallic and bimetallic nanoparticles incorporated polypyrrole films for electrooxidation of methanol. J Power Sources 160:940–948CrossRefGoogle Scholar
  4. 4.
    Selvaraj V, Alagar M (2007) Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem Commun 9:1145–1153CrossRefGoogle Scholar
  5. 5.
    You E, Blas RG, Nicolau E, Scibioh MA, Karanikas CF, Watkins JJ, Cabrera CR (2012) Co-deposition of Pt and ceria anode catalyst in supercritical carbon dioxide for direct methanol fuel cell applications. Electrochim Acta 75:191–200CrossRefGoogle Scholar
  6. 6.
    Qing LV, Yao X, Min Y, Junjie G, Wei X, Changpeng L (2014) Reconstructed PtFe alloy nanoparticles with bulk surface differential structure for methanol oxidation. Electrochim Acta 139:61–68CrossRefGoogle Scholar
  7. 7.
    Colmati F, Antolini E, Gonzalez ER (2005) Pt-Sn catalysts for ethanol oxidation in fuel cell systems: effect of reducing choice. Electrochim Acta 50:5496–5503CrossRefGoogle Scholar
  8. 8.
    Wang A-L, Wan H-C, Xu H, Tong Y-X, Li G-R (2014) Design of Pd/Pani/Pd sandwich structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. Electrochim Acta 127:448–453CrossRefGoogle Scholar
  9. 9.
    Amin RS, Hameed RM, El-Khati KM, Elsayed Youssef M, Elzatahry AA (2012) Accurate tuning of ordered nanotubular platinum electrodes by galvanic plating. Electrochim Acta 59:499–508CrossRefGoogle Scholar
  10. 10.
    Koczkur K, Yi Q, Chen A (2007) Nanoporous Pt-Ru networks and their electrocatalytical properties. Adv Mater 19:2648–2652CrossRefGoogle Scholar
  11. 11.
    Liu F, Yan Q, Zhou WJ, Zhao XS, Lee JY (2006) High regularity porous oxophilic metal films on Pt as model bifunctional catalysts for methanol oxidation. Chem Mater 18:4328–4335CrossRefGoogle Scholar
  12. 12.
    Liu F, Lee JY, Zhou W (2005) Multisegment PtRu nanorods: electrocatalysts with adjustable bimetallic pair sites. Adv Funct Mater 15:1459–1464CrossRefGoogle Scholar
  13. 13.
    Liu R, Iddir H, Fan Q, Hou G, Bo A, Ley KL, Smotkin ES, Sung YE, Kim H, Thomas S, Wieckowski A (2000) Carbon monoxide adsorption on platinum-osmium and platinum-ruthenium-osmium mixed nanoparticles. J Phys Chem B 104:3518–3531CrossRefGoogle Scholar
  14. 14.
    Girishkumar G, Vinodgopal K, Kamat PV (2004) Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J Phys Chem B 108:19960–19966CrossRefGoogle Scholar
  15. 15.
    Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 4:345–348CrossRefGoogle Scholar
  16. 16.
    Kim C, Kim YJ, Kim YA, Yanagisawa T, Park KC, Endo M, Dresselhaus MS (2004) High performance of cup-stacked-type carbon nanotubes as a Pt–Ru catalyst support for fuel cell applications. J Appl Phys 96:5903–5905CrossRefGoogle Scholar
  17. 17.
    Tang H, Chen JH, Nie LH, Liu DY, Deng W, Kuang YF, Yao SZ (2004) High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs). J Colloid Interface Sci 269:26–31CrossRefGoogle Scholar
  18. 18.
    Bigall NC, Hartling T, Klose M, Simon P, Eng LM, Eychmuller A (2008) Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett 8:4588–4592CrossRefGoogle Scholar
  19. 19.
    Li WB, Zhai DY, Qiu H, Pang HA, Pan LJ, Shi Y (2011) Self assembly synthesis of high density platinum nanoparticles on chemically reduced graphene sheets. Chem Lett 40:104–105CrossRefGoogle Scholar
  20. 20.
    Nethravathi C, Anumol EA, Rajamathi M, Ravishankar N (2011) Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity. Nano 3:569–571Google Scholar
  21. 21.
    Yamauchi Y, Takai A, Nagaura T, Inoue S, Kuroda K (2008) Ptfibers with stacked donut-like mesospace by assembling Pt nanoparticles: guided deposition in physically confined self-assembly of surfactants. J Am Chem Soc 130:5426–5427CrossRefGoogle Scholar
  22. 22.
    Ye XR, Lin YH, Wang C, Wai CM (2003) Supercritical fluid fabrication of metal nanowires and nanorodstemplated by multiwalled carbon nanotubes. Adv Mater 15:316–319CrossRefGoogle Scholar
  23. 23.
    Zhang J, Jing B, Tokutake N, Regen SL (2004) Transbilayer complementarity of phospholipids. A look beyond the fluid mosaic model. J Am Chem Soc 126:10856–10857CrossRefGoogle Scholar
  24. 24.
    Kijima T, Yoshimura T, Uota M, Ikeda T, Fujikawa D, Mouri S, Uoyama S (2004) Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates. Angew Chem Int Ed 43:228–232CrossRefGoogle Scholar
  25. 25.
    Mayers B, Jiang X, Sunderland D, Cattle B, Xia Y (2003) Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J Am Chem Soc 125:13364–13365CrossRefGoogle Scholar
  26. 26.
    Song Y, Steen WA, Pena D, Jiang Y-B, Medforth CJ, Huo Q, Pincus JL, Qiu Y, Sasaki DY, Miller JE, Shelnutt JA (2006) Foamlike nanostructures created from dendritic platinum sheets on liposomes. Chem Mater 18:2335–2346CrossRefGoogle Scholar
  27. 27.
    Song Y, Dorin RM, Garcia RM, Jiang Y-B, Wang H, Li P, Qiu Y, Swol FV, Miller JE, Shelnutt JA (2008) Synthesis of platinum nanowheels using a bicellar template. J Am Chem Soc 130:12602–12603CrossRefGoogle Scholar
  28. 28.
    Song YJ, Garcia RM, Dorin RM, Wang HR, Qiu Y, Shelnutt JA (2006) Synthesis of platinum nanocages by using liposomes containing photocatalyst molecules. Angew Chem Int Ed 45:8126–8130CrossRefGoogle Scholar
  29. 29.
    Wang H, Song Y, Medforth CJ, Shelnutt JA (2006) Interfacial synthesis of dendritic platinum nanoshells templated on benzene nanodroplets stabilized in water by a photocatalytic lipoporphyrin. J Am Chem Soc 128:9284–9285CrossRefGoogle Scholar
  30. 30.
    Chen JY, Herricks T, Xia YN (2005) Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics. Angew Chem Int Ed 44:2589–2592CrossRefGoogle Scholar
  31. 31.
    Zhou YG, Chen JJ, Wang FB, Sheng ZH, Xia XH (2010) A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem Commun 46:5951–5953CrossRefGoogle Scholar
  32. 32.
    Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells. Met Rev 46:146Google Scholar
  33. 33.
    Ghorbani M, Lashkenari MS, Eisazadeh H (2011) Application of polyaniline nanocomposite coated on rice husk ash for removal of Hg(II) from aqueous media. Synth Met 161:1430–1433CrossRefGoogle Scholar
  34. 34.
    Ghorbani M, Eisazadeh H (2012) Synthesis and characterization of chemical structure and thermal stability of nanometer size polyaniline and polypyrrole coated on rice husk. Synth Met 162(5):527–553CrossRefGoogle Scholar
  35. 35.
    Luo YC, Do JS (2009) Amperometric ammonium ion sensor based on polyaniline-poly (styrene sulfonate-co-maleic acid) composite conducting polymeric electrode. Sens Actuators B 115:102–108CrossRefGoogle Scholar
  36. 36.
    Koboyashi T, Yoneyam H, Tamura H (1984) Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes. J ElectroanalChem 177:281–291CrossRefGoogle Scholar
  37. 37.
    Sirringhuas H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741CrossRefGoogle Scholar
  38. 38.
    Dimitrakopoulos CD, Mascaro DJ (2001) Organic thin-film transistors: a review of recent advances. IBM J Res Dev 45:11CrossRefGoogle Scholar
  39. 39.
    Malkaj P, Dalas E, Viteratos E, Sakkopoulos S (2006) pH electrodes constructed from polyaniline/zeolite and polypyrrole/zeolite conductive blends. J Appl Polym Sci 101:1853–1856CrossRefGoogle Scholar
  40. 40.
    Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Bredas JL, Logdlund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397:121CrossRefGoogle Scholar
  41. 41.
    Muller CD, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becher H, Meerholz K (2003) Multicolor organic light-emitting displays by solution processing. Nature 421:829CrossRefGoogle Scholar
  42. 42.
    Yu G, Gao J, Hummelen JC, Wudlm F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791CrossRefGoogle Scholar
  43. 43.
    Zhu L, Shen F, Smith Jr RL, Yan L, Li L, Qi X (2017) Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. Chem Eng J 316:770–777CrossRefGoogle Scholar
  44. 44.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Recent developments in conjugated-polymer-based photovoltaic elements. Adv Funct Mater 11:15–26CrossRefGoogle Scholar
  45. 45.
    Habibi B, Azar MH, Zadeh HA, Razmi H (2009) Electrocatalytic oxidation of methanol on mono and bimetallic composite films: Pt and Pt-M (M = Ru, Ir and Sn) nano-particles in poly (o-aminophenol). Int J Hydrogen Energy 34:2880CrossRefGoogle Scholar
  46. 46.
    Arbizzani C, Biso M, Manferrari E, Mastragostino M (2008) Methanol oxidation by PEDOT-PSS/PtRu in DMFC. J Power Sources 178:584–590CrossRefGoogle Scholar
  47. 47.
    Patra S, Munichandraiah N (2009) Electrooxidation of methanol on Pt-modified conductive polymer PEDOT. Langmuir 25:1732–1738CrossRefGoogle Scholar
  48. 48.
    Tintula KK, Pitchumani S, Sridhar P, Shukla AK (2010) A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode. J Chem Sci 122:381–389CrossRefGoogle Scholar
  49. 49.
    Yano J, Shiraga T, Kitani A (2008) Pt and Sn-dispersed polyaniline electrodes for the anodes of the direct ethanol fuel cell. J New Mater Electrochem Syst 11:235Google Scholar
  50. 50.
    Ye H, Zhu Q, Du D (2010) Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk. Technol 101:5175Google Scholar
  51. 51.
    Sharma S, Ganguly A, Papakonstantinou P, Miao X, Li M, Hutchison JL, Delichatsios M, Ukleja S (2010) Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J Phys Chem C 114:19459–19466CrossRefGoogle Scholar
  52. 52.
    Ma CA, Kang L, Shi M, Lang X, Jiang Y (2014) Preparation of Pt-mesoporous tungsten carbide/carbon composites via a soft-template method for electrochemical methanol oxidation. J Alloys Compd 588:481–487CrossRefGoogle Scholar
  53. 53.
    Shanmugam S, Gedanken A (2007) Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small 3:1189–1193CrossRefGoogle Scholar
  54. 54.
    Zhuang W, He L, Zhu J, An R, Wu X, Mu L, Lu X, Lu L, Liu X, Ying H (2015) TiO2 nanofibers heterogeneously wrapped with reduced graphene oxide as efficient Pt electrocatalyst supports for methanol oxidation. Int J Hydrog Energy 40:3679–3688CrossRefGoogle Scholar
  55. 55.
    Wu X, Zhuang W, Lu L, Li L, Zhu J, Mu L, Li W, Zhu Y, Lu X (2017) Excellent performance of Pt-C/TiO2 for methanol oxidation: contribution of mesopores and partially coated carbon. Appl Surf Sci 426:890–896CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Chang G, Shu H, Oyama M, Liu X, He Y (2014) Synthesis of Pt–Pd bimetallic nanoparticles anchored on graphene for highly active methanol electro-oxidation. J Power Sources 262:279–285CrossRefGoogle Scholar
  57. 57.
    Li G, Jiang L, Zhang B, Jiang Q, Su DS, Sun G (2013) A highly active porous Pt–PbOx/C catalyst toward alcohol electro-oxidation in alkaline electrolyte. Int J Hydrog Energy 38:12767–12773CrossRefGoogle Scholar
  58. 58.
    Tengco JMM, Mehrabadi BAT, Zhang Y, Wongkaew A, Regalbuto JR, Weidner JW (2016) Synthesis and electrochemical evaluation of carbon supported Pt-Co bimetallic catalysts prepared by electroless deposition and modified charge enhanced dry impregnation. Catalysts 6:83CrossRefGoogle Scholar
  59. 59.
    Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2012) Fast and facile preparation of reduced graphene oxide supported Pt-Co electrocatalyst for methanol oxidation. Mater Res Bull 47:1486–1493CrossRefGoogle Scholar
  60. 60.
    Huang H, Zhu J, Zhang W, Tiwary CS, Zhang J, Zhang X (2016) Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem Mater 28:1737–1745CrossRefGoogle Scholar
  61. 61.
    Zhan G, Fu Z, Sun D, Pan Z, Xiao C, Wu S (2016) Platinum nanoparticles decorated robust binary transition metal nitride carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction. J Power Sources 326:84–92CrossRefGoogle Scholar
  62. 62.
    Radhakrishnan T, Sandhyarani N (2017) Three dimensional assembly of electrocatalytic platinum nanostructures on reduced graphene oxide—an electrochemical approach for high performance catalyst for methanol oxidation. Int J Hydrogen Energy 42:7014–7022CrossRefGoogle Scholar
  63. 63.
    Srivastava VC, Mall ID, Mishra IM (2009) Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash. Chem Eng Process 48:370–379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Selvaraj Vaithilingam
    • 1
  • Thamil Magal Ramanujam
    • 1
    • 2
  1. 1.Nanotech Research Lab, Department of ChemistryUniversity College of Engineering Villupuram, (A Constituent College of Anna University, Chennai)VillupuramIndia
  2. 2.Department of ChemistryUniversity College of Engineering Panruti, (A Constituent College of Anna University, Chennai)PanrutiIndia

Personalised recommendations