Skip to main content

Advertisement

Log in

Poly (rhodamine B) sensor for norepinephrine and paracetamol: a voltammetric study

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A voltammetric study of norepinephrine (NE) in the presence of paracetamol (PA) was carried out using a poly (rhodamine B)-modified carbon paste electrode (CPE). The poly (rhodamine B) electrode was fabricated by potential cyclic voltammetry using a rhodamine B monomer. The modified electrode exhibited a good affirmative response towards the electrooxidation of NE and PA in physiological pH 7.4 phosphate buffer solution (PBS). The influence of sweep rates and pH (6.2 to 7.8) was studied. The simultaneous electroanalysis of NE and PA and the interference study were investigated by CV and DPV. The modified electrode showed good selectivity and sensitivity with a detection limit of NE of 1.8 μM and PA of 2.2 μM. The real sample analysis of the proposed method is studied by determining the NE in the injection sample and PA in a commercial tablet sample with good recovery results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  2. Cole SW, Korin YD, Fahey JL, Zack JA (1998) Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J Immunol 161:610–616

    CAS  PubMed  Google Scholar 

  3. Beitollahia H, Sheikhshoaie I (2011) Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode. J Electroanal Chem 661:336–342

    Article  Google Scholar 

  4. Mazloum-Ardakani M, Ganjipour B, Beitollahi H, Amini MK, Mirkhalaf F, Naeimif H, Nejati-Barzokif M (2011) Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: application to the analysis of some real samples. Electrochim Acta 56:9113–9120

    Article  CAS  Google Scholar 

  5. Beitollahi H, Tajik S, Biparva P (2014) Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples. Measurement 56:170–177

    Article  Google Scholar 

  6. Beitollahi H, Taher MA, Ahmadipour M, Hosseinzadeh R (2014) Electrocatalytic determination of captopril using a modified carbon nanotube paste electrode: application to determination of captopril in pharmaceutical and biological samples. Measurement 47:770–776

    Article  Google Scholar 

  7. Zahra T, Mohammad MA, Hossein N, Hadi Beitollahi MN, Hamid RZ (2008) Electrochemical behavior of ascorbic acid at a 2,2¢-[3,6-dioxa1,8 octanediylbis (nitriloethylidyne)]-bis-hydroquinone carbon paste electrode. Anal Sci 24:1039–1044

    Article  Google Scholar 

  8. Karimi-Maleh H, Ensafi AA, Beitollahi H, Nasiri V, Khalilzadeh MA, Biparva P (2012) Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics 18:687–694

    Article  CAS  Google Scholar 

  9. Beitollahi H, Gholami A, RezaGanjali M (2015) Preparation, characterization and electrochemical application of Ag–ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. Mater Sci Eng C 57:107–112

    Article  CAS  Google Scholar 

  10. Akhgar MR, Beitollahi H, Salari M, Karimi-Maleh H, Zamani H (2012) Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode. Anal Methods 4:259–264

    Article  CAS  Google Scholar 

  11. De Carvalho RM, Freire RS, Rath S, Kubota LT (2004) Effects of EDTA on signal stability during electrochemical detection of acetaminophen. J Pharm Biomed Anal 34:871–878

    Article  Google Scholar 

  12. Parojcic J, Karljikovic-Rajic K, Ðuric Z, Jovanovic M, Ibric S (2003) Development of the second-order derivative UV spectrophotometric method for direct determination of paracetamol in urine intended for biopharmaceutical characterisation of drug products. Biopharm Drug Dispos 24:309–314

    Article  CAS  Google Scholar 

  13. Yesilada A, Erdogan H, Ertan M (1991) Second derivative spectrophotometric determination of p-aminophenol in the presence of paracetamol. Anal Lett 24:129–138

    Article  CAS  Google Scholar 

  14. Dalmasso PR, Pedano ML, Rivas GA (2012) Electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine. Sens Actuators B: Chem 173:732–736

    Article  CAS  Google Scholar 

  15. Özcan A, Sahin Y (2011) A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode. Anal Chim Acta 685:9–14

    Article  Google Scholar 

  16. Sirajuddin KAR, Shah A, Bhanger MI, Niaz A, Mahesar S (2007) Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochim. Acta Part A 68:747–751

    Article  CAS  Google Scholar 

  17. Guo JH, Harcum WW, Skinner GW, Dluzneski PR, Trumbull DE (2000) Validation of tablet dissolution method by high performance liquid chromatography. Drug Dev Ind Pharm 26:337–342

    Article  CAS  Google Scholar 

  18. Jain AK, Gupta VK, Singh LP, Raisoni JR (2006) A comparative study of Pb 2+ selective sensors based on derivatized tetrapyrazole and calix [4] arene receptors. Electrochim Acta 51:2547–2553

    Article  CAS  Google Scholar 

  19. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenyl-hydrazinecarbothioamide. Anal Chem 80:9848–9851

    Article  CAS  Google Scholar 

  20. Taheri AR, Mohadesi A, Afzali D, Karimi-Maleh H, Mahmoudi-Moghaddam H, Zamani H, Rezayati-Zad Z (2011) Simultaneous voltammetric determination of norepinephrine and folic acid at the surface of modified carbon nanotube paste electrode. Int J Electrochem Sci 6:171–180

    CAS  Google Scholar 

  21. Lee TY, Shim YB (2001) Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer. Anal Chem 73:5629–5632

    Article  CAS  Google Scholar 

  22. Rahman MA, Won MS, Shim YB (2003) Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal Chem 75:1123–1129

    Article  CAS  Google Scholar 

  23. Won MS, Rahman MA, Kwon NH, Shankaran DR, Shim YB (2005) Square-wave voltammetric detection of dopamine at a copper-(3-mercaptopropyl) trimethoxy silane complex modified electrode. Electroanalysis17:2231–2238

  24. Gurudatt NG, Naveen MH, Ban C, Shim YB (2016) Enhanced electrochemical sensing of leukemia cells using drug/lipid co-immobilized on the conducting polymer layer. Biosens Bioelectron 86:33–40

    Article  CAS  Google Scholar 

  25. Naveen MH, Gurudatt NG, Noh HB, Shim YB (2016) De alloyed Au Ni dendrite anchored on a functionalized conducting polymer for improved catalytic oxygen reduction and hydrogen peroxide sensing in living cells. Adv Funct Mater 26:1590–1601

    Article  CAS  Google Scholar 

  26. Naveen MH, Gurudatt NG, Shim YB (2017) Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today 9:419–433

    Article  Google Scholar 

  27. Thomas T, Mascarenhas RJ, Kumara Swamy BE (2012) Poly (rhodamine B) modified carbon paste electrode for the selective detection of dopamine. J Mol Liq 174:70–75

    Article  CAS  Google Scholar 

  28. Hayati F, Asiye AA, Sevda A, Reşat A (2015) Poly (rhodamine B) and MWCNTs composite film for the separation and simultaneous voltammetric quantification of tryptophan, paracetamol, uric acid, dopamine and ascorbic acid, Current Analytical Chemistry11: 87–95

    Article  CAS  Google Scholar 

  29. Wang W, Leng J, Yu Y, Lu L, Bai L, Qiu X (2014) An electropolymerized rhodamine B sensing film-based electrochemical sensor for nitrite with high sensitivity and selectivity. Int J Electrochem Sci 9:921–930

    Google Scholar 

  30. Kuskur CM, Kumara Swamy BE, Jayadevappa H (2017) Poly (naphthol green B) modified carbon paste electrode sensor for catechol and hydroquinone. J Electro anal Chem 804:99–106

    Article  CAS  Google Scholar 

  31. Hong Y, Yuanyuan S, Xinhua L, Yuhai T, Liying H (2007) Electrochemical characterization of poly (Erichrome Black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim Acta 52:6165–6167

    Article  Google Scholar 

  32. Chitravathi S, Kumara Swamy BE, Mamatha GP, Sherigara BS (2011) Simultaneous electrochemical determination of dopamine and ascorbic acid using poly (L-serine) modified carbon paste electrode. J Mol Liq 160:193–199

    Article  CAS  Google Scholar 

  33. Chandra U, Kumara Swamy BE, Gilbert O, Sherigara BS (2010) Voltammetric resolution of dopamine in the presence of ascorbic acid anduric acid at poly (calmagite) film coated carbon paste electrode. Electrochim Acta 55:7166–7174

    Article  CAS  Google Scholar 

  34. Mahanthesha KR, Kumara Swamy BE, Pai KV (2014) Poly (alizarin) modified glassy carbon electrode for the electrochemical investigation of omeprazole: a voltammetric study. Anal. Bioanal. Electrochem 6:234–244

    CAS  Google Scholar 

  35. Beitollahi H, Mohadesi A, Mahani SK, Karimi-Maleh H, Akbari A (2012) New voltammetric strategy for simultaneous determination of norepinephrine, acetaminophen, and folic acid using a 5-amino-3′,4′-dimethoxy-biphenyl-2-ol/carbon nanotube paste electrode. Ionics 18:703–710

    Article  CAS  Google Scholar 

  36. Zhang XH, Wang SF (2003) Voltammetric behavior of noradrenaline at 2-mercaptoethanol self-assembled monolayer modified gold electrode and its analytical application. Sensors 3:61–68

    Article  Google Scholar 

  37. Wang Q, Li N (2001) Electrocatalytic response of norepinephrine at a thiolactic acid self-assembled gold electrode. Talanta 55:1219–1225

    Article  CAS  Google Scholar 

  38. Chandrashekar BN, KumaraSwamy BE (2012) Simultaneous cyclic voltammetric determination of norepinephrine, ascorbic acid and uric acid using TX-100 modified carbon paste electrode. Anal Methods 4: 849–854

    Article  CAS  Google Scholar 

  39. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis 14:225–230

    Article  CAS  Google Scholar 

  40. Wei M, Li M, Li N, Gu Z, Duan X (2002) Electrocatalytic oxidation of norepinephrine at a reduced C60-[dimethyl-(β-cyclodextrin)]2 and Nafion chemically modified electrode. Electrochim Acta 47:2673–2678

    Article  CAS  Google Scholar 

  41. Zhao H, Zhang Y, Yuan Z (2002) Electrochemical behavior of norepinephrine at poly (2,4,6-trimethylpyridine) modified glassy carbon electrode. Electroanalysis 14:445–448

    Article  CAS  Google Scholar 

  42. Goyal RN, Singh SP (2006) Voltammetric determination of paracetamol at C-60-modified glassy carbon electrode. Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  43. Ensafi AA, Karimi-Maleh H, Mallakpour S, Hatami M (2011) Determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4- dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotube paste electrode. Sensors Actuators B Chem 155:464–472

    Article  CAS  Google Scholar 

  44. Pournaghi-Azar MH, Saadatirada A (2010) Determination of paracetamol, ascorbic acid and codeine by differential pulse voltammetry on the aluminum electrode modified by thin layer of palladium. Electroanalysis 22:1592–1598

    CAS  Google Scholar 

  45. Rodriguez MC, Rivas GA (2002) Glassy carbon paste electrodes modified with polyphenol oxidase analytical applications. Anal. Chim. Acta 459:43–51

    Article  CAS  Google Scholar 

  46. Boopathi M, Won MS, Shim YB (2004) A sensor for acetaminophen in a blood medium using a Cu (II)-conducting polymer complex modified electrode. Anal Chim Acta 512:191–197

    Article  CAS  Google Scholar 

  47. Kachoosangi RT, Wildgoose GG, Compton RG (2008) Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal Chim Acta 618:54–60

    Article  CAS  Google Scholar 

  48. Wangfuengkanagul N, Chailapakul O (2002) Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J Pharm Biomed Anal 28:841–847

    Article  CAS  Google Scholar 

  49. Chandrashaker BN, Kumar Swamy BE, Pandurangachar M, Sathisha TV, Sherigara BS (2011) Electropolymerisation of l-arginine at carbon paste electrode and its application to the detection of dopamine, ascorbic and uric acid. Colloids Surf B 88:413–418

    Article  Google Scholar 

  50. Mahanthesha KR, Kumara Swamy BE (2013) Pre-treated/carbon paste electrode based voltammetric sensors for the detection of dopamine in presence of ascorbic acid and uric acid. J Electroanal Chem 703:1–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Kumara Swamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuskur, C.M., Kumara Swamy, B.E., Jayadevappa, H. et al. Poly (rhodamine B) sensor for norepinephrine and paracetamol: a voltammetric study. Ionics 24, 3631–3640 (2018). https://doi.org/10.1007/s11581-018-2483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2483-9

Keywords

Navigation