Skip to main content

The conductivity and dielectric studies of solid polymer electrolytes based on poly (acrylamide-co-acrylic acid) doped with sodium iodide

Abstract

Solid polymer electrolyte thin films based on polyacrylamide-co-acrylic acid (PAAC) doped with sodium iodide (NaI) with different ratios of polymer and salt added with fixed amount of additive of propylene carbonate (PC) were prepared by using solution casting method. The PC was added to the mixture of the solution to provide more flexibility to the polymer film by increasing the plasticity of the thin film membrane. The conductivity and dielectric studies were carried out on these thin films to understand the ion transport properties of the polymer electrolytes. The highest conductivity obtained was 1.88 × 10−5 S cm−1 for the 30% NaI salt-doped polymer electrolyte system at room temperature. The temperature-dependent conductivity agrees with Arrhenius relationship which shows that hopping mechanism of ions in the polymer matrix. The dielectric properties especially the loss tangent used to analyze the segmental relaxation of the polymer chain as more concentration of salt was incorporated. The electric modulus was studied to understand the electrical relaxation processes to overcome electrode polarization effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Vincent CA (1987) Polym Electrolytes. Polymer Electrolytes Prog Solid State Chem 17(3):145–261. https://doi.org/10.1016/0079-6786(87)90003-3

    Article  CAS  Google Scholar 

  2. Xu K (2014) Electrolytes and interphases in Li-Ion batteries and beyond. Chem Rev 114(23):11503–11618. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  3. McCallum JR, Vincent CA (eds) (1987) Polymer electrolyte reviews, Vol. 1 and 2. Elsevier, Amsterdam

    Google Scholar 

  4. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979

    Article  CAS  Google Scholar 

  5. Avellaneda CO, Vieira DF, Al-kahlout A, Leite ER, Pawlicka A, Aegerter MA (2007) Solid-state electrochromic devices with Nb2O5:Mo thin film and gelatin-based electrolyte. Electrochem Acta 53(4):1648–1654. https://doi.org/10.1016/j.electacta.2007.05.065

    Article  CAS  Google Scholar 

  6. Anantha RS, Hariharan K (2005) Physical and ionic transport studies on poly(ethylene oxide)?NaNO polymer electrolyte system. Solid State Ionics 176(1-2):155–162. https://doi.org/10.1016/j.ssi.2004.07.006

    Article  CAS  Google Scholar 

  7. Wright PV (1975) Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J 7(5):319–324. https://doi.org/10.1002/pi.4980070505

    Article  CAS  Google Scholar 

  8. Dillip KP, Choudhary RNP, Samantaray BK (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608

    Google Scholar 

  9. Wieczorek W, Stevens JR (1997) Impedance spectroscopy and phase structure of polyether-poly(methylmethacrylate)-LiCF3SO3 blend-based electrolytes. J Phys Chem B 101(9):1529–1534. https://doi.org/10.1021/jp962517w

    Article  CAS  Google Scholar 

  10. Przyluski J, Wieczorek W (1989) Increasing the conductivity of polymer solid electrolytes: a review. Solid State Ionics 36(3-4):165–169. https://doi.org/10.1016/0167-2738(89)90163-X

    Article  CAS  Google Scholar 

  11. Cherng JY, Munshi MZA, Owens BB, Smyrl WH (1988) Applications of multivalent ionic conductors to polymeric electrolyte batteries. Solid State Ionics 28:857–861

    Article  Google Scholar 

  12. Hassan MF, Arof AK (2005) Ionic conductivity in PEO-KOH polymer electrolytes and electrochemical cell performance. Phys Statue Solidi A 222:2494–2500

    Article  CAS  Google Scholar 

  13. Wieczorekk W, Such K, Florjanczyk Z, Stevens JR (1995) Polyacrylamide based composite polymeric electrolytes. Electrochim Acta 40(13-14):2417–2420. https://doi.org/10.1016/0013-4686(95)00206-T

    Article  Google Scholar 

  14. Lan Z, Wu J, Lin J, Huang M, Yin S, Sato T (2007) Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells. Electrochim Acta 52(24):6673–6678. https://doi.org/10.1016/j.electacta.2007.04.076

    Article  CAS  Google Scholar 

  15. Stamenkovic JV, Premovic PI, Mentus SV (1997) Electrical conductivity of poly (acrylic acid) gels. J Serbian Chem Soc 62:945–950

    CAS  Google Scholar 

  16. Dell RM (2000) Batteries—fifty years of materials development. Solid State Ionics 134(1-2):139–158. https://doi.org/10.1016/S0167-2738(00)00722-0

    Article  CAS  Google Scholar 

  17. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater 16(4):168–177. https://doi.org/10.1016/j.cossms.2012.04.002

    Article  CAS  Google Scholar 

  18. Egashira M, Asai T, Yoshimoto N, Morita M (2011) Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid. Electrochim Acta 58:95–98. https://doi.org/10.1016/j.electacta.2011.08.100

    Article  CAS  Google Scholar 

  19. Osman Z, Isa KBM, Ahmad A, Othman L (2010) A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes. Ionics 16(5):431–435. https://doi.org/10.1007/s11581-009-0410-9

    Article  CAS  Google Scholar 

  20. Farhana NK, Khanmirzaei MH, Ramesh S, Ramesh K (2017) Exploration on polypropylene carbonate polymer for gel polymer electrolyte preparation and dye-sensitized solar cell application. J Appl Polym Sci 134(29):45091. https://doi.org/10.1002/app.45091

    Article  CAS  Google Scholar 

  21. Menaka C, Sakthi Velu K, Manisankar P, Stalin T (2013) Conductivity, structural and electrochemical behavior of plasticized polymer electrolytes for dye-sensitised solar cell. Indian J Chem 52A:467–472

    CAS  Google Scholar 

  22. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkinthar S, Sanjeeviraja C (2014) AC impedance studies on proton-conducting PAN:NH4SCN polymer electrolytes. Ionics 20(10):1391–1398. https://doi.org/10.1007/s11581-014-1091-6

    Article  CAS  Google Scholar 

  23. Wang JP, Youlong X, Wang J, Zhu J, Bai Y, Xiong L (2014) Study on capacitance evolving mechanism of polypyrrole during prolonged cycling. J Phys Chem B 118(5):1353–1362. https://doi.org/10.1021/jp4054428

    Article  CAS  PubMed  Google Scholar 

  24. Zhang HP, Zhang P, Wu YP, Wu HQ (2007) Nanocomposite polymer electrolytes for lithium ion batteries. In: New trends in ionic (co)polymers and hybrids. Nova Publisher, New York (Chapter 4)

    Google Scholar 

  25. Zhu W, Wang X, Yang B, Tang X (2001) A novel ionic-conduction mechanism based on polyurethane electrolyte. Polym Sci B Polym Phys 39(11):1246–1254. https://doi.org/10.1002/polb.1098

    Article  CAS  Google Scholar 

  26. Fattah NFA, Ng HM, Mahipal YK, Numan A, Ramesh S, Ramesh K (2016) An approach to solid-state electrical double layer capacitors fabricated with graphene oxide-doped, ionic liquid-based solid copolymer electrolytes. Materials 9:450

    Article  CAS  PubMed Central  Google Scholar 

  27. Chong MY, Numan A, Liew C-W, Ramesh K, Ramesh S (2016) Comparison of the performance of copper oxide and yttrium oxide nanoparticle based hydroxylethyl cellulose electrolytes for supercapacitors. J Appl Polym Sci 134:44636

    Google Scholar 

  28. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) Electrical relaxation in a glass-forming molten salt. J Phys Chem 78(6):639–648. https://doi.org/10.1021/j100599a016

    Article  CAS  Google Scholar 

  29. Mishra R, Rao KJ (1998) Electrical conductivity studies of poly(ethyleneoxide)- poly(vinylalcohol) blends. Solid State Ionics 106:113–127

    Article  CAS  Google Scholar 

  30. Campbell JA, Goodwin AA, Simon GP (2001) Dielectric relaxation studies of miscible polycarbonate/polyester blends. Polymer 42:4731–4741

    Article  CAS  Google Scholar 

  31. Kim JS (2001) Electric modulus spectroscopy of lithium Tetraborate (Li2B4O7) single crystal. J Phys Soc Jpn 70:3129–3133

    Article  CAS  Google Scholar 

  32. Macdonald JR (ed) (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley-Interscience, New York

    Google Scholar 

  33. Chong MY, Liew C-W, Numan A, Yugal K, Ramesh K, Ng HM, Chong TV, Ramesh S (2016) Effects of ionic liquid on the hydroxylpropylmethyl cellulose (HPMC) solid polymer electrolyte. Ionics 22(12):2421–2430. https://doi.org/10.1007/s11581-016-1768-0

    Article  CAS  Google Scholar 

  34. Chopra S, Sharma S, Goel TC, Mendiratta RG (2003) Structural, dielectric and pyroelectric studies of Pb1-X CaX TiO3 thin films. Solid State Commun 127:299–304

    Article  CAS  Google Scholar 

  35. Tiller AR (1992) Dielectric relaxation in polymers by molecular dynamics simulation. Macromolecules 25(18):4605–4611. https://doi.org/10.1021/ma00044a022

    Article  CAS  Google Scholar 

  36. Macedo PB, Moynihan C, Bose R (1972) Role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171

    CAS  Google Scholar 

  37. Richter H, Wagner H (1998) The dielectric modulus: relaxation versus retardation. Solid State Ionics 105:167–173

    Article  Google Scholar 

  38. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11–14

    Article  Google Scholar 

  39. Baral AK, Narayanan S, Rameszanipour F, Thangadurai V (2014) Evaluation of fundamental transport properties of li-excess garnet-type Li5+2xLa3Ta2-xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Chem Phys 16:11356–11365

    CAS  Google Scholar 

  40. Woo HJ, Majid SR, Arof AK (2012) Dielectric Properties and Morphology of Polymer Electrolyte Based on Poly (ε-caprolactone) and Aluminum thiocyanate. Mater Chem Phys 134:755–761

    Article  CAS  Google Scholar 

  41. Druger SD, Ratner MA, Nitizan A (1985) Generalized hopping model for frequency-dependent transport in a dynamically disordered medium with applications to polymer solid electrolytes. Phys Rev B 31:3939–3947

    Article  CAS  Google Scholar 

  42. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85

    Article  CAS  Google Scholar 

  43. Kulkarni AK, Lunkeneheimer P, Loidl A (2000) Mixed alkali effect in the ac conductivity of glasses. Mater Chem Phys 63:93–97

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Fundamental Research Grant Scheme (FP012-015A), from Ministry of Education, Malaysia and University of Malaya Research Grant (UMRG: RG382-17AFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Saminatha Kumaran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saminatha Kumaran, V., Ng, H.M., Ramesh, S. et al. The conductivity and dielectric studies of solid polymer electrolytes based on poly (acrylamide-co-acrylic acid) doped with sodium iodide. Ionics 24, 1947–1953 (2018). https://doi.org/10.1007/s11581-018-2448-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2448-z

Keywords

  • Impedance spectroscopy
  • Dielectric
  • Segmental relaxation
  • Modulus electric