Skip to main content

Advertisement

Log in

Synthesis of biomass-derived 3D porous graphene-like via direct solid-state transformation and its potential utilization in lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biomass-derived porous carbon materials have recently received considerable attention for the use in energy storage devices due to the low cost. In the work here, water-absorbing biomass of agarics has been used directly to synthesize three-dimensional porous graphene-like (3D-PGL) via a facile, economical, and eco-friendly two-step solid-state transformation process. Characterization results reveal that Fe3+ pre-adsorbed agarics are carbonized to be uniform Fe3O4/C composite in the first step. Then the C precursor is catalyzed to be 3D-graphene in the second step by in situ-formed Fe that was reduced by C around. When assembled as anodes for lithium-ion batteries, the 3D-PGL delivers excellent cycling performance (as high as 572 mAh g−1 after 1200 cycles’ running at 0.2 A g−1). Furthermore, it is worth to mention that when tuning the amount of pre-adsorbed Fe3+, two-dimensional graphene sheet (2D-GS) is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ritchie AG (2001) Recent developments and future prospects for lithium rechargeable batteries. J Power Sources 96(1):1–4. https://doi.org/10.1016/S0378-7753(00)00673-X

    Article  CAS  Google Scholar 

  2. Cui X, Liu T, Zhang X, Xiang X (2017) Enhanced electrochemical performance of lithium ion battery cathode Li3V2(PO4)3/C. Ionics 23(12):3289–3293. https://doi.org/10.1007/s11581-017-2128-4

  3. Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257(3):421–443. https://doi.org/10.1016/j.jpowsour.2013.11.103

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  5. Li Y, Chang B, Li T, Kang L, Xu S, Zhang D, Xie L, Liang W (2016) One-step synthesis of hollow structured Si/C composites based on expandable microspheres as anodes for lithium ion batteries. Electrochem Commun 72:69–73. https://doi.org/10.1016/j.elecom.2016.09.006

    Article  CAS  Google Scholar 

  6. Ni S, Zhang J, Ma J, Yang X, Zhang L (2015) Li3VO4/N-doped graphene with high capacity and excellent cycle stability as anode for lithium ion batteries. J Power Sources 296:377–382. https://doi.org/10.1016/j.jpowsour.2015.07.053

    Article  CAS  Google Scholar 

  7. Li Z, Xu Z, Tan X, Wang H, Holt CMB, Stephenson T, Olsen BC, Mitlin D (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6(3):871–878. https://doi.org/10.1039/c2ee23599d

    Article  CAS  Google Scholar 

  8. Ni S, Ma J, Zhang J, Yang X, Zhang L (2015) Electrochemical performance of cobalt vanadium oxide/natural graphite as anode for lithium ion batteries. J Power Sources 282:65–69. https://doi.org/10.1016/j.jpowsour.2015.01.187

    Article  CAS  Google Scholar 

  9. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  10. Li D, Kaner RB (2017) Graphene-based materials. Science 320(5880):1170–1171

    Article  Google Scholar 

  11. Wang GX, Ahn JH, Yao J, Bewlay S, Liu HK (2004) Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochem Commun 6(7):689–692. https://doi.org/10.1016/j.elecom.2004.05.010

    Article  CAS  Google Scholar 

  12. Chen JS, Yan LC, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J Phys Chem C 113(47):20504–20508. https://doi.org/10.1021/jp908244m

    Article  CAS  Google Scholar 

  13. Zhang W, Yin J, Lin Z, Lin H, Lu H, Wang Y, Huang W (2015) Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta 176:1136–1142. https://doi.org/10.1016/j.electacta.2015.08.001

    Article  CAS  Google Scholar 

  14. Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F (2013) Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon 60(14):558–561. https://doi.org/10.1016/j.carbon.2013.04.053

    Article  CAS  Google Scholar 

  15. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  PubMed  Google Scholar 

  16. Niu Z, Chen J, Hng HH, Ma J, Chen X (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24(30):4144–4150. https://doi.org/10.1002/adma.201200197

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2012) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428

    Article  CAS  Google Scholar 

  18. Chen HW, Chiang YD, Kung CW, Sakai N, Ikegami M, Yamauchi Y, CW W, Miyasaka T, Ho KC (2014) Highly efficient plastic-based quasi-solid-state dye-sensitized solar cells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. J Power Sources 245(1):411–417. https://doi.org/10.1016/j.jpowsour.2013.06.142

    Article  CAS  Google Scholar 

  19. Shieh FK, Hsiao CT, Kao HM, Sue YC, Lin KW, CC W, Chen XH, Wan L, Hsu MH, Hwu JR (2013) Size-adjustable annular ring-functionalized mesoporous silica as effective and selective adsorbents for heavy metal ions. RSC Adv 3(48):25686–25689. https://doi.org/10.1039/c3ra45016c

    Article  CAS  Google Scholar 

  20. QR H, Wang SL, Zhang Y, Tang WH (2010) Synthesis of cobalt sulfide nanostructures by a facile solvothermal growth process. J Alloys Compd 491(1):707–711

    Google Scholar 

  21. Lee YC, Dutta S, KC W (2014) Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem 7(12):3241–3246. https://doi.org/10.1002/cssc.201402605

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto E, Kuroda K (2016) Colloidal Mesoporous Silica Nanoparticles. Bull Chem Soc Jpn 89(5):501–539. https://doi.org/10.1246/bcsj.20150420

    Article  CAS  Google Scholar 

  23. Huang Z, Che S (2015) ChemInform abstract: fabrication of mesostructured silica materials through co-structure-directing route. ChemInform 46(36):617

    Google Scholar 

  24. Chen L, Zhang Y, Lin C, Yang W, Meng Y, Guo Y, Li M, Xiao D (2014) Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. J Mater Chem A 2(25):9684–9690. https://doi.org/10.1039/C4TA00501E

    Article  CAS  Google Scholar 

  25. Lv W, Wen F, Xiang J, Zhao J, Li L, Wang L, Liu Z, Tian Y (2015) Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta 176:533–541. https://doi.org/10.1016/j.electacta.2015.07.059

    Article  CAS  Google Scholar 

  26. Fan YM, Song WL, Li X, Fan LZ (2017) Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon 111:658–666. https://doi.org/10.1016/j.carbon.2016.10.056

    Article  CAS  Google Scholar 

  27. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6(4):1249–1259. https://doi.org/10.1039/c3ee22325f

    Article  CAS  Google Scholar 

  28. Zhang Y, Meng Y, Chen L, Guo Y, Xiao D (2016) High lithium and sodium anodic performance of nitrogen-rich ordered mesoporous carbon derived from alfalfa leaves by a ball-milling assisted template method. J Mater Chem A 4(44):17491–17502. https://doi.org/10.1039/C6TA08485K

    Article  CAS  Google Scholar 

  29. Shi C, Hu L, Guo K, Li H, Zhai T (2017) Highly porous carbon with graphene nanoplatelet microstructure derived from biomass waste for high-performance supercaapacitors in universal electrolyte. Adv Sustainable Syst 1(1–2):1600011. https://doi.org/10.1002/adsu.201600011

    Article  CAS  Google Scholar 

  30. Ahmed MB, Zhou JL, Ngo HH, Guo W (2016) Insight into biochar properties and its cost analysis. Biomass Bioenergy 84:76–86. https://doi.org/10.1016/j.biombioe.2015.11.002

    Article  CAS  Google Scholar 

  31. Dutta S, Bhaumik A, CW W (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7(11):3574–3592. https://doi.org/10.1039/C4EE01075B

    Article  CAS  Google Scholar 

  32. Rodríguezmanzo JA, Phamhuu C, Banhart F (2011) Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 5(2):1529–1534. https://doi.org/10.1021/nn103456z

    Article  CAS  Google Scholar 

  33. Wang H, Shi L, Yan T, Zhang J, Zhong Q, Zhang D (2014) Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. J Mater Chem A 2(13):4739–4750. https://doi.org/10.1039/C3TA15152B

    Article  CAS  Google Scholar 

  34. Chen F, Yang J, Bai T, Long B, Zhou X (2016) Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. J Electroanal Chem 768:18–26. https://doi.org/10.1016/j.jelechem.2016.02.035

    Article  CAS  Google Scholar 

  35. Huang X, Zhou X, Qian K, Zhao D, Liu Z, Yu C (2012) A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. J Alloys Compd 514(2):76–80. https://doi.org/10.1016/j.jallcom.2011.10.087

    Article  CAS  Google Scholar 

  36. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5–6):51–87. https://doi.org/10.1016/j.physrep.2009.02.003

    Article  CAS  Google Scholar 

  37. Ding X, Bai J, Xu T, Li C, Zhang HM, Qu L (2016) A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. Electrochem Commun 72:122–125. https://doi.org/10.1016/j.elecom.2016.09.021

    Article  CAS  Google Scholar 

  38. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  PubMed  Google Scholar 

  39. Ni Z, Wang Y, Yu T, Shen Z (2008) Raman spectroscopy and imaging of graphene. Nano Res 1(4):273–291. https://doi.org/10.1007/s12274-008-8036-1

    Article  CAS  Google Scholar 

  40. Li X, Rao M, Lin H, Chen D, Liu Y, Liu S, Liao Y, Xing L, Xu M, Li W (2015) Sulfur loaded in curved graphene and coated with conductive polyaniline: preparation and performance as cathode of lithium-sulfur battery. J Mater Chem A 3(35):18098–18104. https://doi.org/10.1039/C5TA02207J

    Article  CAS  Google Scholar 

  41. Seo DH, Rider AE, Han ZJ, Kumar S, Ostrikov KK (2013) Plasma break-down and re-build: same functional vertical graphenes from diverse natural precursors. Adv Mater 25(39):5638–5642. https://doi.org/10.1002/adma201301510

    Article  CAS  PubMed  Google Scholar 

  42. Thines KR, Abdullah EC, Mubarak NM, Ruthiraan M (2017) In-situ polymerization of magnetic biochar – polypyrrole composite: a novel application in supercapacitor. Biomass Bioenergy 98:95–111. https://doi.org/10.1016/j.biombioe.2017.01.019

    Article  CAS  Google Scholar 

  43. Zuo Z, Kim TY, Kholmanov I, Li H, Chou H, Li Y (2015) Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-ion battery anodes. Small 11(37):4922–4930. https://doi.org/10.1002/smll.201501434

    Article  CAS  PubMed  Google Scholar 

  44. Schneider JJ (2011) Transforming amorphous into crystalline carbon: observing how graphene grows. ChemCatChem 3(7):1119–1120. https://doi.org/10.1002/cctc.201100078

    Article  CAS  Google Scholar 

  45. Abouimrane A, Compton OC, Amine K, Nguyen SBT (2010) Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C 114(29):12800–12804. https://doi.org/10.1021/jp103704y

    Article  CAS  Google Scholar 

  46. Bertolino G, Andrade A, Riewaldt J, Karbanova J, Corbeil D, Odendahl M, Tonn T (2010) Enhanced electrochemical lithium storage by graphene nanoribbons. J Am Chem Soc 132(36):12556–12558

    Article  CAS  Google Scholar 

  47. Ren L, Hui KN, Hui KS, Liu Y, Qi X, Zhong J, Du Y, Yang J (2015) 3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Sci Rep 5(1):14229. https://doi.org/10.1038/srep14229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094. https://doi.org/10.1002/adma.201104691

    Article  CAS  PubMed  Google Scholar 

  49. Xiao X, Liu P, Wang JS, Verbrugge MW, Balogh MP (2011) Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem Commun 13(2):209–212. https://doi.org/10.1016/j.elecom.2010.12.016

    Article  CAS  Google Scholar 

  50. And MDL, Aurbach D (1997) Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J Phys Chem B 101(23):4630–4640

    Article  Google Scholar 

  51. Mukherjee R, Thomas AV, Krishnamurthy A, Koratkar N (2012) Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6(9):7867–7878. https://doi.org/10.1021/nn303145j

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation for Young Scientists of China (Grant 21403073), the Fundamental Research Funds for Central Universities of SCUT, China (Grant 2015ZZ118), and Guangdong Innovative and Entrepreneurial Research Team Program (Grant 2014ZT05N200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Cheng.

Electronic supplementary material

ESM 1

(DOC 1922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Cheng, S., Yao, M. et al. Synthesis of biomass-derived 3D porous graphene-like via direct solid-state transformation and its potential utilization in lithium-ion battery. Ionics 24, 1879–1886 (2018). https://doi.org/10.1007/s11581-018-2439-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2439-0

Keywords

Navigation