Abstract
The samples of xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C (x:y = 1:0, 3:1, 1:1, 1:2, 0:1) are facilely prepared via a ball milling-assisted two-step sintering route. According to the results of Rietveld refinement, the xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C (x, y ≠ 0) composites are composed of orthorhombic LiFe0.8Mn0.2PO4 and monoclinic L3V2(PO4)3. Electrochemical tests show that the faster reaction kinetics improve the electrochemical properties of the xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C (x, y ≠ 0) composites, in which all multiphase composites release more than capacity of 100 mAh g−1 at 2C at the potential range of 2.5–4.5 V. In particular, the diffusion coefficient of lithium ion is in the magnitude of 10−7 to 10−9 cm2 s−1; Li3V2(PO4)3·2LiFe0.8Mn0.2PO4/C shows the highest specific capacity at the rate range of 0.1–2C and exhibits excellent long-term rate performance with capacity retention of 93.4% (relative to the initial discharge capacity) after 280 cycles at the rate of 5C.
Similar content being viewed by others
References
Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720. https://doi.org/10.1021/cr500049y
Goodenough JB, Park K (2013) The li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. https://doi.org/10.1021/ja3091438
Cao X, Pan A, Zhang Y, Li J, Luo Z, Yang X, Liang S, Cao G (2016) Nanorod-nanoflake interconnected LiMnPO4·Li3V2(PO4)3/C composite for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 8(41):27632–27641. https://doi.org/10.1021/acsami.6b06456
Omenya F, Wen B, Fang J, Zhang R, Wang Q, Chernova NA, Schneider-Haefner J, Cosandey F, Whittingham MS (2015) Mg substitution clarifies the reaction mechanism of olivine LiFePO4. Adv Energy Mater 5(7):1–9. https://doi.org/10.1002/aenm.201401204
Li Z, Peng Z, Zhang H, Hu T, Hu M, Zhu K, Wang X (2016) [100]-oriented LiFePO4 Nanoflakes toward high rate li-ion battery cathode. Nano Lett 16(1):795–799. https://doi.org/10.1021/acs.nanolett.5b04855
Wang H, Liu Y, Li M et al (2010) Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron Adv Mater Rapid Commun 4:1166–1169. https://doi.org/10.1039/b000000x
Liu H, Ren L, Li J, Tuo H (2016) Iron-assisted carbon coating strategy for improved electrochemical LiMn0.8Fe0.2PO4 cathodes. Electrochim Acta 212:800–807. https://doi.org/10.1016/j.electacta.2016.07.049
Xiang W, Wu ZG, Wang EH, Chen MZ, Song Y, Zhang JB, Zhong YJ, Chou SL, Luo JH, Guo XD (2016) Confined synthesis of graphene wrapped LiMn0.5Fe0.5PO4 composite via two step solution phase method as high performance cathode for li-ion batteries. J Power Sources 329:94–103. https://doi.org/10.1016/j.jpowsour.2016.06.108
Novikova S, Yaroslavtsev S, Rusakov V, Chekannikov A, Kulova T, Skundin A, Yaroslavtsev A (2015) Behavior of LiFe1-yMnyPO4/C cathode materials upon electrochemical lithium intercalation/deintercalation. J Power Sources 300:444–452. https://doi.org/10.1016/j.jpowsour.2015.09.092
Wang Z-H, Yuan L-X, Zhang W-X, Huang Y-H (2012) LiFe0.8Mn0.2PO4/C cathode material with high energy density for lithium-ion batteries. J Alloys Compd 532:25–30. https://doi.org/10.1016/j.jallcom.2012.04.008
Yamada A, Kudo Y, Liu K-Y (2001) Reaction mechanism of the olivine-type lix(Mn0.6Fe 0.4)PO4 (0≤x≤1). J Electrochem Soc 148(7):A747. https://doi.org/10.1149/1.1375167
Roberts MR, Gi V, Denuault G, Owen JR (2010) High throughput electrochemical observation of structural phase changes in liFe1-xMnxPO4 during charge and discharge. J Electrochem Soc 157(4):A381–A386. https://doi.org/10.1149/1.3294564
Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14(21):1525–1528. https://doi.org/10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3
Ren M, Yang M, Liu W, Li M, Su L, Wu X, Wang Y (2016) Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources 326:313–321. https://doi.org/10.1016/j.jpowsour.2016.07.009
Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule KM, Xu L, Minhas-Khan A, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14(2):1042–1048. https://doi.org/10.1021/nl404709b
Feng K, Cheng Y, Wang M, Zhang H, Li X, Zhang H (2015) Synthesis and electrochemical properties of Li3V2(P1-xBxO4)3/C cathode materials. J Mater Chem A 3(38):19469–19475. https://doi.org/10.1039/c5ta04724b
Liang S, Hu J, Zhang Y, Wang Y, Cao X, Pan A (2016) Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. J Alloys Compd 683:178–185. https://doi.org/10.1016/j.jallcom.2016.05.095
Ni Q, Bai Y, Yang Z, Li Y, Chen G, Ling L, Ren H, Chen S, Wu F, Wu C (2017) Wet-chemical coordination synthesized Li3V2(PO4)3/C for li-ion battery cathodes. J Alloys Compd 729:49–56. https://doi.org/10.1016/j.jallcom.2017.09.106
Zheng J, Han Y, Zhang B et al (2014) Comparative investigation of phosphate-based composite cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 6(16):13520–13526. https://doi.org/10.1021/am502601r
Zhang B, Shen C, Zheng J, et al (2014) Synthesis and characterization of a multi-layer core-shell composite cathode material LiVOPO4 -Li3V2(PO4)3. J Electrochem Soc 161:A748–A752. https://doi.org/10.1149/2.050405jes
Zheng J-c, Li X-h, Wang Z-x et al (2009) Characteristics of xLiFePO4·y Li3V2(PO4)3 electrodes for lithium batteries. Ionics (Kiel) 15(6):753–759. https://doi.org/10.1007/s11581-009-0374-9
Zheng J-c, Li X-h, Wang Z-x et al (2010) Novel synthesis of LiFePO4-Li3V2(PO4)3 composite cathode material by aqueous precipitation and lithiation. J Power Sources 195(9):2935–2938. https://doi.org/10.1016/j.jpowsour.2009.11.006
Zheng J, Zhang B, Yang Z, Ou X (2013) Studies of composite cathode material LiFePO4Li3V2(PO4)3 and it’s precursor FeVO4· xH2O. Bull Chem Soc Jpn 86:376–381. https://doi.org/10.1246/bcsj.20120238
Liang S, Cao X, Wang Y, Hu Y, Pan A, Cao G (2016) Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance li-ion batteries. Nano Energy 22:48–58. https://doi.org/10.1016/j.nanoen.2016.02.002
Wang F, Yang J, NuLi Y, Wang J (2013) Composites of LiMnPO4 with Li3V2(PO4)3 for cathode in lithium-ion battery. Electrochim Acta 103:96–102. https://doi.org/10.1016/j.electacta.2013.03.201
Wu L, Lu J, Wei G et al (2014) Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4· yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim Acta 146:288–294. https://doi.org/10.1016/j.electacta.2014.09.076
Qin L, Xia Y, Qiu B, Cao H, Liu Y, Liu Z (2013) Synthesis and electrochemical performances of (1−x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. J Power Sources 239:144–150. https://doi.org/10.1016/j.jpowsour.2013.03.063
Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97:498–502. https://doi.org/10.1016/S0378-7753(01)00633-4
Mao WF, Fu YB, Zhao H et al (2015) Rational design and facial synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl Mater Interfaces 7(22):12057–12066. https://doi.org/10.1021/acsami.5b02242
Qiu X, Zhuang Q, Zhang Q et al (2012) Electrochemical and electronic properties of LiCoO2 cathode investigated by galvanostatic cycling and EIS. Phys Chem Chem Phys 14(8):2617–2630. https://doi.org/10.1039/c2cp23626e
Zhuang Q-C, Wei T, Du L-L, Cui YL, Fang L, Sun SG (2010) An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4. J Phys Chem C 114(18):8614–8621. https://doi.org/10.1021/jp9109157
Luo Y, Xu X, Zhang Y, Pi Y, Yan M, Wei Q, Tian X, Mai L (2015) Three-dimensional LiMnPO4 ·Li3V2(PO4)3/C nanocomposite as a bicontinuous cathode for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 7(31):17527–17534. https://doi.org/10.1021/acsami.5b05451
Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55(7):2384–2390. https://doi.org/10.1016/j.electacta.2009.11.096
Wang J, Wang Z, Li X, Guo H, Wu X, Zhang X, Xiao W (2013) xLi3V2(PO4)3·LiVPO4F/C composite cathode materials for lithium ion batteries. Electrochim Acta 87:224–229. https://doi.org/10.1016/j.electacta.2012.09.014
Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate li-ion batteries. Nano Lett 14(5):2849–2853. https://doi.org/10.1021/nl5008568
Zhang L, Qu Q, Zhang L, Li J, Zheng H (2014) Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithiumion batteries. J Mater Chem A 2(3):711–719. https://doi.org/10.1039/c3ta14010e
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, P., Han, E., Zhu, L. et al. Synthesis and electrochemical performance characterization of xLi3V2(PO4)3·yLiFe0.8Mn0.2PO4/C cathode materials for lithium-ion batteries. Ionics 24, 2945–2955 (2018). https://doi.org/10.1007/s11581-017-2431-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11581-017-2431-0