Advertisement

Ionics

, Volume 24, Issue 9, pp 2681–2688 | Cite as

Structural, electronic and transport properties of X3SnC (X=Cr/Mn/Cu) electrodes—first principle approach

  • Rachna Singh
  • B. Keshav Rao
  • Mohan L Verma
Original Paper

Abstract

The density functional theory is approached for the comparative study of electronic, transport and magnetic properties of SnC electrode and X3SnC (X = Cu/Mn/Cr) electrodes. The cohesive energy analysis exhibits the highest stability of SnC which reduces gradually by dispersing of elements Cr/Mn/Cu, bulk modulus shows highest compressibility of Cu3SnC electrode. Enthalpy of SnC reveals its strongest forming ability and alloying nature. The energy band diagrams exhibit the semiconducting nature of SnC electrode and conducting nature of Cu3SnC/Mn3SnC/Cr3SnC electrodes. The spin-up and spin-down density of states explains the magnetic nature of Mn3SnC and Cr3SnC electrodes. The ionicity factor reveals the purely covalent and partially ionic nature of inter atomic bonds of Sn-X/C-X. The current voltage characteristics also reveal the semiconducting nature of SnC, purely metallic nature of Cu3SnC electrode, and the negative resistance features of Mn3SnC and Cr3SnC electrodes. Transmission curves also support the current voltage characteristics.

Keywords

SIESTA Density functional theory Transport properties Transmission curve Current voltage characteristics 

Notes

Acknowledgements

We gratefully acknowledge the kind support of the management of Shri Shankaracharya Technical Campus-SSGI, Bhilai, and the Principal of UPU Government Polytechnic, Durg. Helpful discussions with Prof. Ravindra Pandey (Michigan Technological University, USA) and Dr. Rodrigo Garcia Amorim (Universidade Federal Fluminense-UFF, Brazil) are kindly acknowledged.

References

  1. 1.
    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276(5317):1395–1397.  https://doi.org/10.1126/science.276.5317.1395 CrossRefGoogle Scholar
  2. 2.
    Courtney IA, Dahn JR (1997) Electrochemical and in situ X-Ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144(6):2045.  https://doi.org/10.1149/1.1837740 CrossRefGoogle Scholar
  3. 3.
    Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90.  https://doi.org/10.1016/S0378-7753(96)02547-5 CrossRefGoogle Scholar
  4. 4.
    Courtney IA, Dahn JR (1997) Key factors controlling the reversibility of the reaction of lithium with SnO[sub 2] and Sn[sub 2]BPO[sub 6] glass. J Electrochem Soc 144(9):2943.  https://doi.org/10.1149/1.1837941 CrossRefGoogle Scholar
  5. 5.
    Li N, Martin CR (2001) A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis. J Electrochem Soc 148(2):A164.  https://doi.org/10.1149/1.1342167 CrossRefGoogle Scholar
  6. 6.
    Tamura N, Fujimoto M, Kamino M, Fujitani S (2004) Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries. Electrochim Acta 49(12):1949–1956.  https://doi.org/10.1016/j.electacta.2003.12.024 CrossRefGoogle Scholar
  7. 7.
    Zhang JJ, Xia YY (2006) Co-Sn alloys as negative electrode materials for rechargeable lithium batteries. J Electrochem Soc 153(8):A1466.  https://doi.org/10.1149/1.2204871 CrossRefGoogle Scholar
  8. 8.
    Shin NR, Kang YM, Song MS, Kim DY, Kwon HS (2009) Effects of Cu substrate morphology and phase control on electrochemical performance of Sn–Ni alloys for Li-ion battery. J Power Sources 186(1):201–205.  https://doi.org/10.1016/j.jpowsour.2008.09.095 CrossRefGoogle Scholar
  9. 9.
    Ke FS, Huang L, Jiang HH, Wei HB, Yang FZ, Sun SG (2007) Fabrication and properties of three-dimensional macroporous Sn–Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries. Electrochem Commun 9(2):228–232.  https://doi.org/10.1016/j.elecom.2006.07.040 CrossRefGoogle Scholar
  10. 10.
    Tamura N, Ohshita R, Fujimoto M, Fujitani S, Kamino M, Yonezu I (2002) Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes. J Power Sources 107(1):48–55.  https://doi.org/10.1016/S0378-7753(01)00979-X CrossRefGoogle Scholar
  11. 11.
    Beattie SD, Dahn JR (2003) Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion batteries. J Electrochem Soc 150(7):A894.  https://doi.org/10.1149/1.1577336 CrossRefGoogle Scholar
  12. 12.
    Ke FS, Huang L, Cai JS, Sun SG (2007) Electroplating synthesis and electrochemical properties of macroporous Sn–Cu alloy electrode for lithium-ion batteries. Electrochim Acta 52(24):6741–6747.  https://doi.org/10.1016/j.electacta.2007.04.100 CrossRefGoogle Scholar
  13. 13.
    Park JW, Eom JY, Kwon HS (2009) Fabrication of Sn–C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries. Electrochem Commun 11(3):596–598.  https://doi.org/10.1016/j.elecom.2008.12.022 CrossRefGoogle Scholar
  14. 14.
    Liu C, Jiang H, Yao Y (2011) Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys Rev B: Condens Matter Mater Phys 84(19):195430.  https://doi.org/10.1103/PhysRevB.84.195430 CrossRefGoogle Scholar
  15. 15.
    Xu Y, Yan B, Zhang HJ, Wang J, Xu G, Tang P, Duanand W, Zhang SC (2013) Large-gap quantum spin hall insulators in tin films. Phys Rev Lett 111(13):136804.  https://doi.org/10.1103/PhysRevLett.111.136804 CrossRefPubMedGoogle Scholar
  16. 16.
    Kim GS, Si Y, Kim HS, Im DM (2014) Composite anode active material for lithium rechargeable battery US 8,822,079 B2Google Scholar
  17. 17.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871.  https://doi.org/10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  18. 18.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745–2779.  https://doi.org/10.1088/0953-8984/14/11/302 CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Ordejon P,Artacho E and Soler JM (1996) Selfconsistent order-N density-functional calculations for very large system. Phys Rev B 53:R10441Google Scholar
  21. 21.
    Zhang RQ, Zhang QZ, Zhao MW (2004) A scheme for the economical use of numerical basis sets in calculations with SIESTA. Theor Chem Acc 112 (2004):158.  https://doi.org/10.1007/s00214-004-0598-8
  22. 22.
    Artacho E, Sánchez-Portal D, Ordejón P, García A and Soler JM(1999) Linear-Scaling ab-initio Calculations for Large and Complex Systems. Phys Stat Sol (b) 215:809Google Scholar
  23. 23.
    Lu TY, Liao XX, Wang HQ, Zheng JC (2012) Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study. J Mater Chem 22(19):10062.  https://doi.org/10.1039/c2jm30915g CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Yan J, Sun Y, Wen Y, Chu L, Wu M, Huang Q, Wang C, Lynn JW, Chen Y (2014) Relationship between spin ordering, entropy, and anomalous lattice variation in Mn3Sn1−εSiεC1−δ compounds. J Inorganic Chemistry 53(4):2317–2324.  https://doi.org/10.1021/ic403063t CrossRefGoogle Scholar
  26. 26.
    Pandey R, Rerat M, Darrigan C, Causa M (2000) A theoretical study of stability, electronic, and optical properties of GeC and SnC. J Appl Phys 88(11):6462–6466.  https://doi.org/10.1063/1.1287225 CrossRefGoogle Scholar
  27. 27.
    Martins JL, Zunger A (1986) Stability of ordered bulk and epitaxial semiconductor alloys. Phys Rev Lett 56(13):1400–1403.  https://doi.org/10.1103/PhysRevLett.56.1400 CrossRefPubMedGoogle Scholar
  28. 28.
    Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci U S A 30(9):244–247.  https://doi.org/10.1073/pnas.30.9.244 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jiles D (1998) Introduction to magnetism and magnetic materials, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  30. 30.
    Mao P, Yu B, Liu Z, Wang F, Ju Y (2013) First-principles calculations of structural, elastic and electronic properties of AB2 type intermetallics in Mg–Zn–Ca–Cu alloy. J of Magnesium and Alloys 1(3):256–262.  https://doi.org/10.1016/j.jma.2013.10.001 CrossRefGoogle Scholar
  31. 31.
    Ma ZN, Wang X, Yan TT, Li Q, Xu QC, Tian JL, Wang L (2017) J of Alloys and Compounds.  https://doi.org/10.1016/ j.jallcom.2017.02.172
  32. 32.
    Gurusiddappa J, Madhurib W, Suvarna RP, Dasan KP (2016) Studies on the morphology and conductivity of PEO/LiClO4. Materials Today: Proceedings 3(6):1451–1459.  https://doi.org/10.1016/j.matpr.2016.04.028 CrossRefGoogle Scholar
  33. 33.
    Catlow CRA, Stoneham AM (1983) Ionicity Solids. J. Phys C Solid State Phys 16(22):4321–4338.  https://doi.org/10.1088/0022-3719/16/22/010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Uday Prasad Government PolytechnicDurg (Chhattisgarh)India
  2. 2.Department of Applied Physics, FET-SSGIBhilaiIndia

Personalised recommendations