Skip to main content
Log in

Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, the effect of various nanofillers with different particle sizes and dielectric constants (BaTiO3, CeO2, Er2O3, or TiO2) on blend solid polymer electrolyte comprising PEO and PVC complexed with bulky LiPF6 has been explored. The XRD analysis confirms the polymer nanocomposite formation. FTIR provides evidence of interaction among the functional groups of the polymer with the ions and the nanofiller in terms of shifting and change of the peak profile. The highest ionic conductivity is ~ 2.3 × 10−5 S cm−1 with a wide electrochemical stability window of ~ 3.5 V for 10 wt% Er2O3. The real and imaginary parts of dielectric permittivity follow the identical trend of the decreasing value of dielectric permittivity and dielectric loss with increase in the frequency. The particle size and the dielectric constant show an abnormal trend with different nanofillers. The AC conductivity follows the universal Jonscher power law, and an effective mechanism has been proposed to understand the nanofiller interaction with cation coordinated polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104(10):4419–4462. https://doi.org/10.1021/cr020738u

    Article  CAS  Google Scholar 

  2. Goren A, Costa CM, Machiavello MT, Cintora-Juarez D, Nunes-Pereira J, Tirado JL, Silva MM, Ribelles JG, Lanceros-Mendez S (2015) Effect of the degree of porosity on the performance of poly (vinylidene fluoride-trifluoroethylene)/poly (ethylene oxide) blend membranes for lithium-ion battery separators. Solid State Ionics 280:1–9. https://doi.org/10.1016/j.ssi.2015.08.003

    Article  CAS  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  4. Sadiq M, Sharma AL, Arya A (2016) Optimization of free standing polymer electrolytes films for lithium ion batteries application. Integr Res Adv 3(1):16–20

    Google Scholar 

  5. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7(5):319–327. https://doi.org/10.1002/pi.4980070505

    Article  CAS  Google Scholar 

  6. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14(11):589. https://doi.org/10.1016/0032-3861(73)90146-8

    Article  CAS  Google Scholar 

  7. Armand M (1983) Polymer solid electrolytes-an overview. Solid State Ionics 9:745–754

    Article  Google Scholar 

  8. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42. https://doi.org/10.1016/j.eurpolymj.2005.09.017

    Article  CAS  Google Scholar 

  9. Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19(5):795–809. https://doi.org/10.1007/s11581-012-0760-6

    Article  CAS  Google Scholar 

  10. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279. https://doi.org/10.1007/s11581-016-1756-4

    Article  CAS  Google Scholar 

  11. Lockwood DJ (2005) Nanostructure science and technology. Springer, Berlin

    Google Scholar 

  12. Pitawala HM, Dissanayake MA, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ionics 178(13):885–888. https://doi.org/10.1016/j.ssi.2007.04.008

    Article  CAS  Google Scholar 

  13. Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites. J Appl Polym Sci 118(5):2743–2753. https://doi.org/10.1002/app.32677

    Article  CAS  Google Scholar 

  14. Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO4. Ionics 15(3):357–367. https://doi.org/10.1007/s11581-008-0275-3

    Article  CAS  Google Scholar 

  15. Rajendran S, Prabhu MR (2010) Effect of different plasticizer on structural and electrical properties of PEMA-based polymer electrolytes. J Appl Electrochem 40(2):327–332. https://doi.org/10.1007/s10800-009-9979-y

    Article  CAS  Google Scholar 

  16. Rahman MY, Ahmad A, Wahab SA (2009) Electrical properties of a solid polymeric electrolyte of PVC–ZnO–LiClO4. Ionics 15(2):221–225. https://doi.org/10.1007/s11581-008-0262-8

    Article  CAS  Google Scholar 

  17. Bhatt C, Swaroop R, Arya A, Sharma AL (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5(11–12):418–434

    CAS  Google Scholar 

  18. Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234:19–24. https://doi.org/10.1016/j.ssi.2012.12.011

    Article  CAS  Google Scholar 

  19. Arya A, Sharma AL (2016) Conductivity and stability properties of solid polymer electrolyte based on PEO-PAN+ LiPF6 for energy storage. Appl Sci Lett 2(2):72–75

    Google Scholar 

  20. Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43(5):1963–1968. https://doi.org/10.1016/j.eurpolymj.2007.02.006

    Article  CAS  Google Scholar 

  21. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002. https://doi.org/10.1088/1361-6463/aa8675

    Article  CAS  Google Scholar 

  22. Arya A, Sharma S, Sharma AL, Kumar D, Sadiq M (2016) Structural and dielectric behavior of blend polymer electrolyte based on PEO-PAN + LiPF6. Asian J Eng Appl Technol 5(1):4–7

    Google Scholar 

  23. Younesi R, Veith GM, Johansson P, Edström K, Vegge T (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8(7):1905–1922. https://doi.org/10.1039/C5EE01215E

    Article  CAS  Google Scholar 

  24. Trang TT, Lee DK, Kim JH (2013) Enhancing the ionic transport of PEO-based composite polymer electrolyte by addition of TiO2 nanofiller for quasi-solid state dye-sensitized solar cells. Met Mater Int 19(6):1369–1372. https://doi.org/10.1007/s12540-013-0643-z

    Article  CAS  Google Scholar 

  25. Sun HY, Sohn HJ, Yamamoto O, Takeda Y, Imanishi N (1999) Enhanced lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3. J Electrochem Soc 146(5):1672–1676. https://doi.org/10.1149/1.1391824

    Article  CAS  Google Scholar 

  26. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001. https://doi.org/10.1088/0022-3727/41/22/223001

    Article  CAS  Google Scholar 

  27. Ali TM, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21(3):829–840

    Article  CAS  Google Scholar 

  28. Yap YL, You AH, Teo LL, Hanapei H (2013) Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. Int J Electrochem Sci 8:2154–2163

    CAS  Google Scholar 

  29. Marcinek M, Bac A, Lipka P, Zaleska A, Zukowska G, Borkowska R, Wieczorek W (2000) Effect of filler surface group on ionic interactions in PEG−LiClO4−Al2O3 composite polyether electrolytes. J Phys Chem B 104:11088–11093

    Article  CAS  Google Scholar 

  30. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40(13–14):2251–2258. https://doi.org/10.1016/0013-4686(95)00172-B

    Article  CAS  Google Scholar 

  31. Ramesh S, Arof AK (2001) Structural, thermal and electrochemical cell characteristics of poly (vinyl chloride)-based polymer electrolytes. J Power Sources 99(1):41–47. https://doi.org/10.1016/S0378-7753(00)00690-X

    Article  CAS  Google Scholar 

  32. Mihaylova MD, Krestev VP, Kresteva MN, Amzil A, Berlinova IV (2001) Amphiphilic graft copolymers with poly (oxy ethylene) side chains: supermolecular structure in solid state: I. WAXS Stud Eur Polym J 37(2):233–239. https://doi.org/10.1016/S0014-3057(00)00103-8

    Article  CAS  Google Scholar 

  33. Liu JW, Li XH, Wang ZX, Guo HJ, Peng WJ, Zhang YH, Hu QY (2010) Preparation and characterization of lithium hexafluorophosphate for lithium-ion battery electrolyte. Trans Nonferrous Metals Soc China 20(2):344–348. https://doi.org/10.1016/S1003-6326(09)60144-8

    Article  CAS  Google Scholar 

  34. Appetecchi GB, Henderson W, Villano P, Berrettoni M, Passerini S (2001) PEO-LiN (SO2CF2CF3)2 polymer electrolytes: I. XRD, DSC, and ionic conductivity characterization. J Electrochem Soc 148(10):A1171–A1178. https://doi.org/10.1149/1.1403728

    Article  CAS  Google Scholar 

  35. Mohapatra SR, Thakur AK, Choudhary RNP (2009) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. J Power Sources 191(2):601–613. https://doi.org/10.1016/j.jpowsour.2009.01.100

    Article  CAS  Google Scholar 

  36. Wodecka-Duś B, Czekaj D (2009) Fabbrication and dielectricproperties of donor doped BaTiO3 ceramics. Arch Metall Mater 54:923–933

    Google Scholar 

  37. Sarkar B, Chakrabarti K, Das K, De SK (2012) Optical and ferroelectric properties of ruthenium-doped BaTiO3 nanocubes. J Phys D Appl Phys 45(50):505304. https://doi.org/10.1088/0022-3727/45/50/505304

    Article  CAS  Google Scholar 

  38. Liu YH, Zuo JC, Ren XF, Yong L (2014) Synthesis and character of cerium oxide (CeO2) nanoparticles by the precipitation method. Meta 53(4):463–465

    CAS  Google Scholar 

  39. Abu-Zied BM, Hussein MA, Asiri AM (2016) Synthesis, characterization and electrical conductivity of nano-crystalline erbium sesquioxide by the precipitation method and subsequent calcination. Int J Electrochem Sci 11(8):7182–7197

    Article  CAS  Google Scholar 

  40. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J(Nat Sci) 42(5):357–361

    Google Scholar 

  41. Anandgaonker P, Kulkarni G, Gaikwad S, Rajbhoj A (2014) Nanocrystalline titanium dioxide catalyst for the synthesis of azlactones. Chin J Catal 35(2):196–200. https://doi.org/10.1016/S1872-2067(12)60741-4

    Article  CAS  Google Scholar 

  42. Ramesh S, Liew CW, Morris E, Durairaj R (2010) Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes. Thermochimica Acta 511(1):140–146. https://doi.org/10.1016/j.tca.2010.08.005

    Article  CAS  Google Scholar 

  43. Mohapatra SR, Thakur AK, Choudhary RNP (2009) Vibrational spectroscopy analysis of ion conduction mechanism in dispersed phase polymer nanocomposites. J Polym Sci B Polym Phys 47(1):60–71. https://doi.org/10.1002/polb.21613

    Article  CAS  Google Scholar 

  44. Arya A, Sharma AL, Sharma S, Sadiq M (2016) Role of low salt concentration on electrical conductivity in blend polymeric films. J Integr Sci Technol 4(1):17–20

    Google Scholar 

  45. Sharma AL, Thakur AK (2011) Polymer matrix–clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46(6):1916–1931. https://doi.org/10.1007/s10853-010-5027-x

    Article  CAS  Google Scholar 

  46. Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16(4):339–350. https://doi.org/10.1007/s11581-009-0394-5

    Article  CAS  Google Scholar 

  47. Wang J, Guan F, Cui L, Pan J, Wang Q, Zhu L (2014) Achieving high electric energy storage in a polymer nanocomposite at low filling ratios using a highly polarizable phthalocyanine interphase. J Polym Sci B Polym Phys 52(24):1669–1680. https://doi.org/10.1002/polb.23554

    Article  CAS  Google Scholar 

  48. Sharma AL, Thakur AK (2015) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21(6):1561–1575. https://doi.org/10.1007/s11581-014-1336-4

    Article  CAS  Google Scholar 

  49. Reddeppa N, Sharma AK, Rao VN, Chen W (2014) AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 47:33–41. https://doi.org/10.1016/j.measurement.2013.08.047

    Article  Google Scholar 

  50. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE (2014) Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes. Solid State Ionics 266:25–28. https://doi.org/10.1016/j.ssi.2014.08.002

    Article  CAS  Google Scholar 

  51. Xuan X, Wang J, Wang H (2005) Theoretical insights into PF6 and its alkali metal ion pairs: geometries and vibrational frequencies. Electrochim Acta 50(20):4196–4201. https://doi.org/10.1016/j.electacta.2005.01.045

    Article  CAS  Google Scholar 

  52. Arya A, Sharma S, Sharma AL (2015) Improved electrical properties of free standing blend polymer for renewable energy resources. DAE Solid State Phys Symposium 1731(1):110034 AIP Publishing

    Google Scholar 

  53. Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540. https://doi.org/10.1007/s11581-016-1908-6

    Article  CAS  Google Scholar 

  54. Tang R, Jiang C, Qian W, Jian J, Zhang X, Wang H, Yang H (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5(1):13645. https://doi.org/10.1038/srep13645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thakur AK, Pradhan DK, Samantaray BK, Choudhary RNP (2006) Studies on an ionically conducting polymer nanocomposite. J Power Sources 159(1):272–276. https://doi.org/10.1016/j.jpowsour.2006.04.096

    Article  CAS  Google Scholar 

  56. Macdonald JR (1992) Impedance spectroscopy. Ann Biomed Eng 20(3):289–305. https://doi.org/10.1007/BF02368532

    Article  CAS  PubMed  Google Scholar 

  57. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on structure property relationship in composite polymer electrolytes. J Power Sources 139(1):384–393. https://doi.org/10.1016/j.jpowsour.2004.05.050

    Article  CAS  Google Scholar 

  58. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147(5):1718–1721. https://doi.org/10.1149/1.1393423

    Article  CAS  Google Scholar 

  59. Sharma AL, Thakur AK (2013) High ionic conductivity and desirable stability properties of PNC for renewable energy applications. Solid State Phys Proc 57th DAE Solid State Phys Symp 1512(1):954–955 AIP Publishing

    CAS  Google Scholar 

  60. Shukla N, Thakur AK (2011) Enhancement in electrical and stability properties of amorphous polymer based nanocomposite electrolyte. J Non-Cryst Solids 357(22):3689–3701. https://doi.org/10.1016/j.jnoncrysol.2011.06.036

    Article  CAS  Google Scholar 

  61. Hu W, Zhang SN, Niu X, Liu C, Pei Q (2014) An aluminium nanoparticle–acrylate copolymer nanocomposite as a dielectric elastomer with a high dielectric constant. J Mater Chem C 2(9):1658–1666. https://doi.org/10.1039/c3tc31929f

    Article  CAS  Google Scholar 

  62. Bandara TM, Dissanayake MA, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics 189(1):63–68. https://doi.org/10.1016/j.ssi.2011.03.004

    Article  CAS  Google Scholar 

  63. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 95(24):7904–7929

    Article  CAS  Google Scholar 

  64. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867. https://doi.org/10.1039/C3CP53830C

    Article  CAS  PubMed  Google Scholar 

  65. Rahaman MH, Khandaker MU, Khan ZR, Kufian MZ, Noor IS, Arof AK (2014) Effect of gamma irradiation on poly (vinyledenedifluoride)–lithium bis (oxalato) borate electrolyte. Phys Chem Chem Phys 16(23):11527–11537. https://doi.org/10.1039/C4CP01233J

    Article  PubMed  Google Scholar 

  66. Elashmawi IS, Gaabour LH, Raman (2015) Morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys 5:105–110. https://doi.org/10.1016/j.rinp.2015.04.005

    Article  Google Scholar 

  67. Sadiq M, Arya A, Sharma AL (2017) Dielectric study of polymer nanocomposite films for energy storage applications. Recent Trends Mater Devices 178:389–396. https://doi.org/10.1007/978-3-319-29096-6_51

    Article  Google Scholar 

  68. Ravi M, Pavani Y, Kumar KK, Bhavani S, Sharma AK, Rao VN (2011) Studies on electrical and dielectric properties of PVP: KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130(1-2):442–448. https://doi.org/10.1016/j.matchemphys.2011.07.006

    Article  CAS  Google Scholar 

  69. Sunitha VR, Radhakrishnan S (2016) Impedance and dielectric studies of nanocomposite polymer electrolyte systems using MMT and ferroelectric fillers. Ionics 22(12):2437–2446. https://doi.org/10.1007/s11581-016-1784-0

    Article  CAS  Google Scholar 

  70. Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21(2):217–221. https://doi.org/10.1002/adma.200801106

    Article  CAS  Google Scholar 

  71. Bi M, Hao Y, Zhang J, Lei M, Bi K (2017) Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites. Nano 9:16386–16395

    CAS  Google Scholar 

  72. Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes. J Appl Polym Sci 132:41311

    Google Scholar 

  73. Li W, Xing Y, Wu Y, Wang J, Chen L, Yang G, Tang B (2015) Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on electrospun PVdF nanofibrous membrane. Electrochim Acta 151:289–296. https://doi.org/10.1016/j.electacta.2014.11.083

    Article  CAS  Google Scholar 

  74. Hema M, Tamilselvi P (2016) Lithium ion conducting PVA: PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler. J Phys Chem Solids 96:42–48

    Article  CAS  Google Scholar 

  75. Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17(2):135–143. https://doi.org/10.1007/s11581-010-0502-6

    Article  CAS  Google Scholar 

  76. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of almond-west formalism. Int J Electrochem Sci 9:7644–7659

    CAS  Google Scholar 

  77. Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6(4):1249–1259. https://doi.org/10.1039/c3ee22325f

    Article  CAS  Google Scholar 

  78. Nancy AC, Suthanthiraraj SA (2017) Effect of Al2O3 nanofiller on the electrical, thermal and structural properties of PEO:PPG based nanocomposite polymer electrolyte. Ionics 23(6):1439–1449. https://doi.org/10.1007/s11581-017-1976-2

    Article  CAS  Google Scholar 

  79. Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer–clay nanocomposite film based on (PAN)8LiClO4. J Polym Sci B Polym Phys 46(23):2577–2592. https://doi.org/10.1002/polb.21583

    Article  CAS  Google Scholar 

  80. Yadav M, Kumar M, Tiwari T, Srivastava N (2017) Wheat starch+ NaI: a high conducting environment friendly electrolyte system for energy devices. Ionics 23(10):2871–2880. https://doi.org/10.1007/s11581-016-1930-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors acknowledges CUPB for financial support and partial financial support from UGC Startup Grant (GP-41). The author is also thankful to Mr. Dinesh Kumar, a research scholar in the School of Materials Science & Technology at the Indian Institute of Technology (BHU), Varanasi, for support in XRD characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, A., Sadiq, M. & Sharma, A.L. Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24, 2295–2319 (2018). https://doi.org/10.1007/s11581-017-2364-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2364-7

Keywords

Navigation