, Volume 24, Issue 8, pp 2489–2498 | Cite as

Voltammetric sensing of nitrite in aqueous solution using titanium dioxide anchored multiwalled carbon nanotubes

  • Mambo Moyo
  • Prince Mudarikwa
  • Munyaradzi Shumba
  • Jonathan O. Okonkwo
Original Paper


A glassy carbon electrode modified with TiO2 anchored on multiwalled carbon nanotube particles was used for voltammetric determination of nitrite in phosphate buffer solution (pH 7). Characterization of modified electrodes was performed using transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDS), and voltammetric techniques. Under optimal conditions, TiO2/MWCNT/GCE reduced oxidation potential by 250 mV and enhanced i pa by 2.7-fold (≈ 172%) higher when compared with bare glassy carbon electrode. A linear voltammetric response from 0.02 to 600 μM with a detection limit of 0.011 μM (s/n = 3) was obtained using DPV. The apparent diffusion coefficient for nitrite was calculated to be 2.15 × 10−6 cm2 s−1. The fabricated sensor was used for the determination of nitrite in water samples and the results were consistent with the values obtained by the ultraviolet–visible spectroscopy (UV-Vis) method.


Nitrite Nano TiO2 Multiwalled carbon nanotube Voltammetry 



The authors would like to acknowledge laboratory facilities from Midlands State University, Gweru, Zimbabwe.

Compliance with ethical standards

Conflict of interest

The authors declare that have no conflict of interest.


  1. 1.
    Jing L (2009) Electrocatalytic oxidation of nitrite at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Chin J Chem 27(12):2373–2378CrossRefGoogle Scholar
  2. 2.
    Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379–385CrossRefGoogle Scholar
  3. 3.
    Pandikumar A, Yusoff N, Huang NM, Lim HN (2014) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182(5–6):1113–1122Google Scholar
  4. 4.
    Kamyabi AM, Aghajanloo F (2008) Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. J Electroanal Chem 614(1):157–165CrossRefGoogle Scholar
  5. 5.
    Ma X, Miao T, Zhu W, Gao X, Wang C, Zhao C, Ma H (2014) Electrochemical detection of nitrite based on glassy carbon electrode modified with gold–polyaniline–graphene nanocomposites. RSC Adv 4(101):57842–57849. CrossRefGoogle Scholar
  6. 6.
    Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568.[0559:NPOSWW]2.0.CO;2 CrossRefGoogle Scholar
  7. 7.
    Pandikumar A, Manonmani S, Ramaraj R (2012) TiO2–Au nanocomposite materials embedded in polymer matrices and their application in the photocatalytic reduction of nitrite to ammonia. Catal Sci Technol 2(2):345–353. CrossRefGoogle Scholar
  8. 8.
    WHO (World health organisation) (2004) Guidelines for drinking water quality, vol Vol. 1, 3rd edn. World Health Organization, GenevaGoogle Scholar
  9. 9.
    Ferreira IMPLVO, Silva S (2008) Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta 745:1598–1602CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Ahmed AR, Syed AA (2007) Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta 72(4):1239–1247CrossRefGoogle Scholar
  12. 12.
    Kodamatani H, Yamazaki S, Saito K, Tomiyasu T, Komatsu Y (2009) Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J Chromatogr A 1216(15):3163–3167. CrossRefGoogle Scholar
  13. 13.
    Bi HL, Zhou WH, Wang YH, Dong SJ (2008) Preparation of nanoparticles of bipyridineruthenium and silicotungstate and application as electrochemiluminescence sensor. Electroanalysis 20(9):996–1001. CrossRefGoogle Scholar
  14. 14.
    Moyo M, Lehutso RF, Okonkwo OJ (2015) Improved electro-oxidation of triclosan at nano-zinc oxide-multiwalled carbon nanotube modified glassy carbon electrode. Sensors Actuators B 209:898–905. CrossRefGoogle Scholar
  15. 15.
    Meng Z, Zheng J, Li Q (2015) A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode. J Iran Chem Soc 12(6):1053–1060. CrossRefGoogle Scholar
  16. 16.
    Yu C, Guo J, Gu H (2010) Electrocatalytical oxidation of nitrite and its determination based on Au@ Fe3O4 nanoparticles. Electroanalysis 22(9):1005–1011. CrossRefGoogle Scholar
  17. 17.
    GR X, Xu G, ML X, Zhang Z, Tian Y, Choi HN, Lee WY (2012) Amperometric determination of nitrite at poly (methylene blue)-modified glassy carbon electrode. Kor Chem Soc 33(2):415–419CrossRefGoogle Scholar
  18. 18.
    Zhu N, Xu Q, Li S, Gao H (2009) Electrochemical determination of nitrite based on poly (amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochem Commun 11(12):2308–2311. CrossRefGoogle Scholar
  19. 19.
    Adekunle AS, Mamba BB, Agboola BO, Ozoemena KI (2011) Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode. Int J Electrochem Sci 9(2011):1439–1453Google Scholar
  20. 20.
    Li SJ, Zhao GY, Zhang RX, Hou YL, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180(9–10):821–827. CrossRefGoogle Scholar
  21. 21.
    Gholivand MB, Jalalvand AR, Goicoechea HC (2014) Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles. Mater Sci Eng C 40:109–120. CrossRefGoogle Scholar
  22. 22.
    Meng Z, Li B, Zheng J, Sheng Q, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Michrochim Acta 175(3-4):251–257. CrossRefGoogle Scholar
  23. 23.
    Muzvidziwa T, Moyo M, Okonkwo OJ, Shumba M, Nharingo T, Upenyu Guyo U (2017) Electrodeposition of zinc oxide nanoparticles on multiwalled carbon nanotube-modified electrode for determination of caffeine in wastewater effluent. Int J Environ Anal Chem 97:1–14CrossRefGoogle Scholar
  24. 24.
    Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148:22–28CrossRefGoogle Scholar
  25. 25.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. CrossRefGoogle Scholar
  26. 26.
    Jain R, Dhanjai (2011) TiO2-multi walled carbon nanotubes hybrid film sensor for sensing of antiprotozoal agent satranidazole in solubilzed system. J Electrochem Soc 160(8):H474–H480CrossRefGoogle Scholar
  27. 27.
    Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode. Colloids Surf B 85(2):289–292. CrossRefGoogle Scholar
  28. 28.
    Sun YJ, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode. Bioelectrochemistry 82(2):125–130. CrossRefGoogle Scholar
  29. 29.
    Kumaravel A, Chandrasekaran M (2011) Biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J Electroanal Chem 650(2):163–170. CrossRefGoogle Scholar
  30. 30.
    Xian H, Wang P, Zhou Y, Lu Q, Wu S, Li Y, Wang L (2010) Electrochemical determination of nitrite via covalent immobilization of a single-walled carbon nanotubes and single stranded deoxyribonucleic acid nanocomposite on a glassy carbon electrode. Microchim Acta 171(1–2):63–69. CrossRefGoogle Scholar
  31. 31.
    Jiang J, Fan W, Du X (2014) Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles. Biosens Bioelectron 51(2014):343–348. CrossRefGoogle Scholar
  32. 32.
    He B, Chen W (2016) Voltammetric determination of sulfonamides with a modified glassy carbon electrode using carboxyl multiwalled carbon nanotubes. J Braz Chem Soc 27(12):2216–2225Google Scholar
  33. 33.
    Afkhami A, Madrakian T, Ghaedi H, Khanmohammadi H (2012) Construction of a chemically modified electrode for the selective determination of nitrite and nitrate ions based on a new nanocomposite. Electrochim Acta 66:255–264. CrossRefGoogle Scholar
  34. 34.
    Ning D, Zhang H, Zheng J (2014) Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem 717:29–33CrossRefGoogle Scholar
  35. 35.
    Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim Acta 52(21):6237–6247. CrossRefGoogle Scholar
  36. 36.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  37. 37.
    Afkhami M, Bahram S, Gholami Z, Zand Z (2005) Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Anal Biochemist 336(2):295–299. CrossRefGoogle Scholar
  38. 38.
    Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sensors Actuators B 143((7):539–546CrossRefGoogle Scholar
  39. 39.
    Ojani R, Raoof JB, Zamani S (2013) A novel and simple electrochemical sensor for electrocatalytic reduction of nitrite and oxidation of phenylhydrazine based on poly (o-anisidine) film using ionic liquid carbon paste electrode. Appl Surf Sci 271:98–104. CrossRefGoogle Scholar
  40. 40.
    Yuan B, Xu C, Lin L, Shi Y, Li S, Zhang R, Zhang D (2014) Polyethylenimine-bridged graphene oxide–gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide. Sensors Actuators B 198:55–61. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Mambo Moyo
    • 1
  • Prince Mudarikwa
    • 1
  • Munyaradzi Shumba
    • 1
  • Jonathan O. Okonkwo
    • 2
  1. 1.Sensor Laboratory Research Group, Department of Chemical TechnologyMidlands State UniversityGweruZimbabwe
  2. 2.Department of Environmental, Water, and Earth SciencesTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations