Skip to main content
Log in

Voltammetric sensing of nitrite in aqueous solution using titanium dioxide anchored multiwalled carbon nanotubes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A glassy carbon electrode modified with TiO2 anchored on multiwalled carbon nanotube particles was used for voltammetric determination of nitrite in phosphate buffer solution (pH 7). Characterization of modified electrodes was performed using transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDS), and voltammetric techniques. Under optimal conditions, TiO2/MWCNT/GCE reduced oxidation potential by 250 mV and enhanced i pa by 2.7-fold (≈ 172%) higher when compared with bare glassy carbon electrode. A linear voltammetric response from 0.02 to 600 μM with a detection limit of 0.011 μM (s/n = 3) was obtained using DPV. The apparent diffusion coefficient for nitrite was calculated to be 2.15 × 10−6 cm2 s−1. The fabricated sensor was used for the determination of nitrite in water samples and the results were consistent with the values obtained by the ultraviolet–visible spectroscopy (UV-Vis) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jing L (2009) Electrocatalytic oxidation of nitrite at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Chin J Chem 27(12):2373–2378

    Article  Google Scholar 

  2. Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379–385

    Article  CAS  PubMed  Google Scholar 

  3. Pandikumar A, Yusoff N, Huang NM, Lim HN (2014) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182(5–6):1113–1122

    Google Scholar 

  4. Kamyabi AM, Aghajanloo F (2008) Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. J Electroanal Chem 614(1):157–165

    Article  CAS  Google Scholar 

  5. Ma X, Miao T, Zhu W, Gao X, Wang C, Zhao C, Ma H (2014) Electrochemical detection of nitrite based on glassy carbon electrode modified with gold–polyaniline–graphene nanocomposites. RSC Adv 4(101):57842–57849. https://doi.org/10.1039/C4RA08543D

    Article  CAS  Google Scholar 

  6. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

    Article  Google Scholar 

  7. Pandikumar A, Manonmani S, Ramaraj R (2012) TiO2–Au nanocomposite materials embedded in polymer matrices and their application in the photocatalytic reduction of nitrite to ammonia. Catal Sci Technol 2(2):345–353. https://doi.org/10.1039/C1CY00298H

    Article  CAS  Google Scholar 

  8. WHO (World health organisation) (2004) Guidelines for drinking water quality, vol Vol. 1, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  9. Ferreira IMPLVO, Silva S (2008) Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta 745:1598–1602

    Article  CAS  Google Scholar 

  10. Abbas MN, Mostafa GA (2010) Anal Chim Acta 410(1):185–192. Determination of traces of nitrite and nitrate in water by solid phase spectrophotometry

    Google Scholar 

  11. Ahmed AR, Syed AA (2007) Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta 72(4):1239–1247

    Article  CAS  Google Scholar 

  12. Kodamatani H, Yamazaki S, Saito K, Tomiyasu T, Komatsu Y (2009) Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J Chromatogr A 1216(15):3163–3167. https://doi.org/10.1016/j.chroma.2009.01.096

    Article  CAS  PubMed  Google Scholar 

  13. Bi HL, Zhou WH, Wang YH, Dong SJ (2008) Preparation of nanoparticles of bipyridineruthenium and silicotungstate and application as electrochemiluminescence sensor. Electroanalysis 20(9):996–1001. https://doi.org/10.1002/elan.200704145

    Article  CAS  Google Scholar 

  14. Moyo M, Lehutso RF, Okonkwo OJ (2015) Improved electro-oxidation of triclosan at nano-zinc oxide-multiwalled carbon nanotube modified glassy carbon electrode. Sensors Actuators B 209:898–905. https://doi.org/10.1016/j.snb.2014.12.059

    Article  CAS  Google Scholar 

  15. Meng Z, Zheng J, Li Q (2015) A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode. J Iran Chem Soc 12(6):1053–1060. https://doi.org/10.1007/s13738-014-0565-9

    Article  CAS  Google Scholar 

  16. Yu C, Guo J, Gu H (2010) Electrocatalytical oxidation of nitrite and its determination based on Au@ Fe3O4 nanoparticles. Electroanalysis 22(9):1005–1011. https://doi.org/10.1002/elan.200900465

    Article  CAS  Google Scholar 

  17. GR X, Xu G, ML X, Zhang Z, Tian Y, Choi HN, Lee WY (2012) Amperometric determination of nitrite at poly (methylene blue)-modified glassy carbon electrode. Kor Chem Soc 33(2):415–419

    Article  CAS  Google Scholar 

  18. Zhu N, Xu Q, Li S, Gao H (2009) Electrochemical determination of nitrite based on poly (amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochem Commun 11(12):2308–2311. https://doi.org/10.1016/j.elecom.2009.10.018

    Article  CAS  Google Scholar 

  19. Adekunle AS, Mamba BB, Agboola BO, Ozoemena KI (2011) Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode. Int J Electrochem Sci 9(2011):1439–1453

    Google Scholar 

  20. Li SJ, Zhao GY, Zhang RX, Hou YL, Liu L, Pang H (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim Acta 180(9–10):821–827. https://doi.org/10.1007/s00604-013-0999-2

    Article  CAS  Google Scholar 

  21. Gholivand MB, Jalalvand AR, Goicoechea HC (2014) Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles. Mater Sci Eng C 40:109–120. https://doi.org/10.1016/j.msec.2014.03.044

    Article  CAS  Google Scholar 

  22. Meng Z, Li B, Zheng J, Sheng Q, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Michrochim Acta 175(3-4):251–257. https://doi.org/10.1007/s00604-011-0688-y

    Article  CAS  Google Scholar 

  23. Muzvidziwa T, Moyo M, Okonkwo OJ, Shumba M, Nharingo T, Upenyu Guyo U (2017) Electrodeposition of zinc oxide nanoparticles on multiwalled carbon nanotube-modified electrode for determination of caffeine in wastewater effluent. Int J Environ Anal Chem 97:1–14

    Article  CAS  Google Scholar 

  24. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148:22–28

    Article  CAS  Google Scholar 

  25. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  26. Jain R, Dhanjai (2011) TiO2-multi walled carbon nanotubes hybrid film sensor for sensing of antiprotozoal agent satranidazole in solubilzed system. J Electrochem Soc 160(8):H474–H480

    Article  CAS  Google Scholar 

  27. Fan Y, Liu JH, Lu HT, Zhang Q (2011) Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2–graphene modified glassy carbon electrode. Colloids Surf B 85(2):289–292. https://doi.org/10.1016/j.colsurfb.2011.02.041

    Article  CAS  Google Scholar 

  28. Sun YJ, Huang KJ, Zhao SF, Fan Y, Wu ZW (2011) Direct electrochemistry and electrocatalysis of hemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode. Bioelectrochemistry 82(2):125–130. https://doi.org/10.1016/j.bioelechem.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  29. Kumaravel A, Chandrasekaran M (2011) Biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. J Electroanal Chem 650(2):163–170. https://doi.org/10.1016/j.jelechem.2010.10.013

    Article  CAS  Google Scholar 

  30. Xian H, Wang P, Zhou Y, Lu Q, Wu S, Li Y, Wang L (2010) Electrochemical determination of nitrite via covalent immobilization of a single-walled carbon nanotubes and single stranded deoxyribonucleic acid nanocomposite on a glassy carbon electrode. Microchim Acta 171(1–2):63–69. https://doi.org/10.1007/s00604-010-0404-3

    Article  CAS  Google Scholar 

  31. Jiang J, Fan W, Du X (2014) Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles. Biosens Bioelectron 51(2014):343–348. https://doi.org/10.1016/j.bios.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  32. He B, Chen W (2016) Voltammetric determination of sulfonamides with a modified glassy carbon electrode using carboxyl multiwalled carbon nanotubes. J Braz Chem Soc 27(12):2216–2225

    CAS  Google Scholar 

  33. Afkhami A, Madrakian T, Ghaedi H, Khanmohammadi H (2012) Construction of a chemically modified electrode for the selective determination of nitrite and nitrate ions based on a new nanocomposite. Electrochim Acta 66:255–264. https://doi.org/10.1016/j.electacta.2012.01.089

    Article  CAS  Google Scholar 

  34. Ning D, Zhang H, Zheng J (2014) Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem 717:29–33

    Article  CAS  Google Scholar 

  35. Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim Acta 52(21):6237–6247. https://doi.org/10.1016/j.electacta.2007.03.072

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  37. Afkhami M, Bahram S, Gholami Z, Zand Z (2005) Micell-mediated extraction for the spectrophotometric determination of nitrite in water and biological samples based on its reaction with p-nitroaniline in the presence of diphenylamine. Anal Biochemist 336(2):295–299. https://doi.org/10.1016/j.ab.2004.10.026

    Article  CAS  Google Scholar 

  38. Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sensors Actuators B 143((7):539–546

    Article  CAS  Google Scholar 

  39. Ojani R, Raoof JB, Zamani S (2013) A novel and simple electrochemical sensor for electrocatalytic reduction of nitrite and oxidation of phenylhydrazine based on poly (o-anisidine) film using ionic liquid carbon paste electrode. Appl Surf Sci 271:98–104. https://doi.org/10.1016/j.apsusc.2013.01.132

    Article  CAS  Google Scholar 

  40. Yuan B, Xu C, Lin L, Shi Y, Li S, Zhang R, Zhang D (2014) Polyethylenimine-bridged graphene oxide–gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide. Sensors Actuators B 198:55–61. https://doi.org/10.1016/j.snb.2014.03.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge laboratory facilities from Midlands State University, Gweru, Zimbabwe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mambo Moyo.

Ethics declarations

Conflict of interest

The authors declare that have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyo, M., Mudarikwa, P., Shumba, M. et al. Voltammetric sensing of nitrite in aqueous solution using titanium dioxide anchored multiwalled carbon nanotubes. Ionics 24, 2489–2498 (2018). https://doi.org/10.1007/s11581-017-2358-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2358-5

Keywords

Navigation