Advertisement

Ionics

, Volume 24, Issue 8, pp 2455–2464 | Cite as

Application of graphene supporting platinum nanoparticles layer in electrochemical sensors with potentiometric and voltammetric detection

Original Paper

Abstract

The present work reports a possibility of using a layer made of graphene supporting platinum nanoparticles (PtNPs-GR) in electrochemical sensors as active and intermediate layer. New sensors with greatly improved both potentiometric and voltammetric signals were prepared by using a simple and effective drop casting method and characterized by a cyclic voltammetry and a electrochemical impedance spectroscopy. The performance of the new potentiometric sensor was evaluated by the use an ion-selective membrane with well-known valinomycin ion carrier. Potassium electrodes had a Nernstian slope (59.10 mV/pK), high stability and reproducibility of the standard potential values, and a very small drift potential. Under optimized operating conditions, the voltammetric sensor with PtNPs-GR responded to paracetamol concentration in the range from 20 nM to 2.2 μM with the detection limit of 8 nM.

Keywords

Graphene Platinum nanoparticles Electrochemical sensors Voltammetric detection Ion-selective electrodes 

Notes

Acknowledgments

The author (Cecylia Wardak) thanks the Faculty of Materials Science and Ceramics of AGH University of Science and Technology for invitation and possibility of participating in research.

Funding Information

This work was supported by AGH University of Science and Technology grant (Project No. 11.11.160.799).

References

  1. 1.
    Yin T, Qin W (2013) Applications of nanomaterials in potentiometric sensors. Trends Anal Chem 51:79–86.  https://doi.org/10.1016/j.trac.2013.06.009 CrossRefGoogle Scholar
  2. 2.
    Makra I, Gyurcsányi RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43:55–59.  https://doi.org/10.1016/j.elecom.2014.03.007 CrossRefGoogle Scholar
  3. 3.
    Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108(2):329–351.  https://doi.org/10.1021/cr068100w CrossRefGoogle Scholar
  4. 4.
    Bakker E, Pretsch E (2001) Potentiometry at trace levels. Trends Anal Chem 20(1):11–19.  https://doi.org/10.1016/S0167-2940(01)90073-1 CrossRefGoogle Scholar
  5. 5.
    Raveendran J, Resmi PE, Ramachandran T, Nair BG, Satheesh Babua TG (2016) Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sensors Actuators B Chem 243:589–595.  https://doi.org/10.1016/j.snb.2016.11.158 CrossRefGoogle Scholar
  6. 6.
    Zhou H, Li S, Wu Y, Chen D, Li Y, Zheng FYH, Yu H (2016) Nitrogen-doped carbon spheres surface modified with in situ synthesized Au nanoparticles as electrochemical selective sensor for simultaneous detection of trace nitrophenol and dihydroxybenzene isomers. Sensors Actuators B Chem 237:487–494.  https://doi.org/10.1016/j.snb.2016.06.122 CrossRefGoogle Scholar
  7. 7.
    Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte A, Cardosa S (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrAC - Trends Anal Chem 47:27–36.  https://doi.org/10.1016/j.trac.2013.02.004 CrossRefGoogle Scholar
  8. 8.
    Yu G, Zhang W, Zhao Q, Wu W, Wei X, Lu Q (2016) Enhancing the sensitivity of hexachlorobenzene electrochemical sensor based on nitrogen-doped graphene. Sensors Actuators B Chem 235:439–446.  https://doi.org/10.1016/j.snb.2016.05.072 CrossRefGoogle Scholar
  9. 9.
    Wardak C (2015) Solid contact cadmium ion-selective electrode based on ionic liquid and carbon nanotubes. Sensors Actuators B Chem 209:131–137.  https://doi.org/10.1016/j.snb.2014.11.107 CrossRefGoogle Scholar
  10. 10.
    Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon N Y 48(8):2127–2150.  https://doi.org/10.1016/j.carbon.2010.01.058 CrossRefGoogle Scholar
  11. 11.
    Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A (2009) Graphene, the new nanocarbon. J Mater Chem 19(17):2457–2469.  https://doi.org/10.1039/b815239j CrossRefGoogle Scholar
  12. 12.
    Li F, Ye J, Zhou M, Gan S, Zhang Q, Han D, Niu L (2012) All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst 137(3):618–623.  https://doi.org/10.1039/C1AN15705A CrossRefGoogle Scholar
  13. 13.
    Ping J, Wang Y, Wu J, Ying Y (2011) Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem Commun 13(12):1529–1532.  https://doi.org/10.1016/j.elecom.2011.10.018 CrossRefGoogle Scholar
  14. 14.
    Paczosa-Bator B (2012) All-solid-state selective electrodes using carbon black. Talanta 93:424–427.  https://doi.org/10.1016/j.talanta.2012.02.013 CrossRefGoogle Scholar
  15. 15.
    Paczosa-Bator B (2015) Ion-selective electrodes with superhydrophobic polymer/carbon nanocomposites as solid contact. Carbon N Y 95:879–887.  https://doi.org/10.1016/j.carbon.2015.09.006 CrossRefGoogle Scholar
  16. 16.
    Paczosa-Bator B, Cabaj L, Piech R, Skupień K (2013) Potentiometric sensors with carbon black supporting platinum nanoparticles. Anal Chem 85(21):10255–10261.  https://doi.org/10.1021/ac402885y CrossRefGoogle Scholar
  17. 17.
    Justino C, Gomes A, Freitas A, Duarte A, Rocha-Santos T (2017) Graphene based sensors and biosensors. TrAC - Trends Anal Chem 91:53–66.  https://doi.org/10.1016/j.trac.2017.04.003 CrossRefGoogle Scholar
  18. 18.
    Song D, Xia J, Zhang F, Bi S, Xiang W, Wang Z, Xia L, Xia Y, Li Y, Xia L (2015) Multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensors Actuators B Chem 206:111–118.  https://doi.org/10.1016/j.snb.2014.08.084 CrossRefGoogle Scholar
  19. 19.
    Chen X, Wu G, Jiang Y, Wang Y, Chen X (2011) Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136(22):4631–4640.  https://doi.org/10.1039/c1an15661f CrossRefGoogle Scholar
  20. 20.
    Lin C, Loan P, Chen T, Liu K, Chen C, Wei K, Li L (2013) Label-free electrical detection of DNA hybridization on graphene using hall effect measurements: revisiting the sensing mechanism. Adv Funct Mater 23(18):2301–2307.  https://doi.org/10.1002/adfm.201202672 CrossRefGoogle Scholar
  21. 21.
    Zhang R, Chen W (2017) Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens Bioelectron 89(Pt 1):249–268.  https://doi.org/10.1016/j.bios.2016.01.080 CrossRefGoogle Scholar
  22. 22.
    Liu MM, Wei WT, YZ L, Wu H, Chen W (2012) Synthesis of graphene-supported hollow AgPd alloy nanoparticles and the application in detection of hydrogen peroxide. Chinese J Anal Chem 40(10):1477–1481.  https://doi.org/10.1016/S1872-2040(11)60576-8 CrossRefGoogle Scholar
  23. 23.
    Zhang C, Li L, Ju J, Chen W (2016) Electrochemical sensor based on graphene-supported tin oxide nanoclusters for nonenzymatic detection of hydrogen peroxide. Electrochim Acta 210:181–189.  https://doi.org/10.1016/j.electacta.2016.05.151 CrossRefGoogle Scholar
  24. 24.
    Zhang R, Sun CL, YJ L, Chen W (2015) Graphene nanoribbon-supported PtPd concave nanocubes for electrochemical detection of TNT with high sensitivity and selectivity. Anal Chem 87(24):12262–12269.  https://doi.org/10.1021/acs.analchem.5b03390 CrossRefGoogle Scholar
  25. 25.
    Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212.  https://doi.org/10.1016/j.bios.2013.02.010 CrossRefGoogle Scholar
  26. 26.
    Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87(3):1903–1910.  https://doi.org/10.1021/ac5041555 CrossRefGoogle Scholar
  27. 27.
    Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53.  https://doi.org/10.1016/j.aca.2011.10.025 CrossRefGoogle Scholar
  28. 28.
    Wu L, Deng D, Jin J, Lu X, Chen J (2012) Nanographene-based tyrosinase biosensor for rapid detection of bisphenol a. Biosens Bioelectron 35(1):193–199.  https://doi.org/10.1016/j.bios.2012.02.045 CrossRefGoogle Scholar
  29. 29.
    Singal S, Srivastava AK, Biradar AM, Mulchandani A, Rajesh (2014) Pt nanoparticles-chemical vapor deposited graphene composite based immunosensor for the detection of human cardiac troponin I. Sensors Actuators B Chem 205:363–370.  https://doi.org/10.1016/j.snb.2014.08.088 CrossRefGoogle Scholar
  30. 30.
    Park DS, Won MS, Goyal RN, Shim YB (2012) The electrochemical sensor for methanol detection using silicon epoxy coated platinum nanoparticles. Sensors Actuators B Chem 174:45–50.  https://doi.org/10.1016/j.snb.2012.08.017 CrossRefGoogle Scholar
  31. 31.
    Vijayaraj K, Jin S-H, Park D-S (2017) A sensitive and selective nitrite detection in water using graphene/platinum nanocomposite. Electroanalysis 29(2):345–351.  https://doi.org/10.1002/elan.201600133 CrossRefGoogle Scholar
  32. 32.
    Paczosa-Bator B, Cabaj L, Pięk M, Piech R, Kubiak W (2015) Carbon-supported platinum nanoparticle solid-state ion selective electrodes for the determination of potassium. Anal Lett 48(17):2773–2785.  https://doi.org/10.1080/00032719.2015.1045594 CrossRefGoogle Scholar
  33. 33.
    Paczosa-Bator B, Cabaj L, Piech R, Skupień K (2012) Platinum nanoparticles intermediate layer in solid-state selective electrodes. Analyst 137(22):5272–5277.  https://doi.org/10.1039/c2an35933b CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Bai X, Wang X, Shiu K, Zhu Y, Jiang H (2014) Highly sensitive graphene–Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal Chem 86(19):9459–9465.  https://doi.org/10.1021/ac5009699 CrossRefGoogle Scholar
  35. 35.
    Paczosa-Bator B (2014) Effects of type of nanosized carbon black on the performance of an all-solid-state potentiometric electrode for nitrate. Microchim Acta 181(9-10):1093–1099.  https://doi.org/10.1007/s00604-014-1216-7 CrossRefGoogle Scholar
  36. 36.
    Radu A, Anastasova-Ivanova S, Paczosa-Bator B, Danielewski M, Bobacka J, Lewenstam A, Diamond D (2010) Diagnostic of functionality of polymer membrane–based ion selective electrodes by impedance spectroscopy. Anal Methods 2(10):1490–1498.  https://doi.org/10.1039/c0ay00249f CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyCracowPoland
  2. 2.Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations