, Volume 24, Issue 5, pp 1545–1551 | Cite as

A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature

  • Xufeng Yan
  • Zhuobin Li
  • Hangjun Ying
  • Feng Nie
  • Lixin Xue
  • Zhaoyin Wen
  • Wei-Qiang Han
Short Communication


A thin Li7La3Zr2O12 (LLZO) film of several micrometers was prepared by a novel method, which underwent the changes from micro-sized particles, nanoparticle slurry, and the final thin film. The LLZO film exhibited a high stability with metallic Li. The all-solid-state battery was composed by Li metal anode, a mixture cathode (LiCoO2 and LLZO), and the solid electrolyte of a composite of LLZO and LITFSI film. At room temperature, the Li/composite of LLZO and LITFSI/LCO cell showed a discharge capacity of 119.3 mAh g−1 at a current density of 0.21 mA cm−2 after 45 cycles, which was approximately 100% of that of the second cycle. Electrochemical impedance spectroscopy showed the reduction of the radius in low-frequency semicircle, demonstrating an improvement of interfacial contact between LLZO and LCO during the cycling.

Graphical abstract


All-solid-state batteries Lithium batteries Solid electrolytes Garnets Membranes 


Funding information

This work was financially supported by the Strategic Priority Research Program of the Chinese Project Academy of Science (No. XDA09010201), the China Postdoctoral Science Foundation (Grant No. 2015M570529), the Ningbo 3315 International Team of Advanced Energy Storage Materials, the Zhejiang Province Key Science and Technology Innovation Team (Grant No. 2013TD16), and the National Natural Science Foundation of China (Grant No. 51371186).


  1. 1.
    Armand M, Tarascon J (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417. CrossRefGoogle Scholar
  3. 3.
    Zhou G, Li F, Cheng H (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7(4):1307–1338. CrossRefGoogle Scholar
  4. 4.
    Armand M, Tarascon J (2008) Building better batteries. Nature 451(7179):652–657. CrossRefGoogle Scholar
  5. 5.
    Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618. CrossRefGoogle Scholar
  6. 6.
    Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727. CrossRefGoogle Scholar
  7. 7.
    Felix B, Dias L, Jakobert B, Veldhuis J (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191CrossRefGoogle Scholar
  8. 8.
    Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 135(3):975–978. CrossRefGoogle Scholar
  9. 9.
    Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540. CrossRefGoogle Scholar
  10. 10.
    Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516. CrossRefGoogle Scholar
  11. 11.
    Ma C, Chen K, Liang C, Nan CW, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7(5):1638. CrossRefGoogle Scholar
  12. 12.
    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1(4):16030. CrossRefGoogle Scholar
  13. 13.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686. CrossRefGoogle Scholar
  14. 14.
    David IN, Thompson T, Wolfenstine J, Allen JL, Sakamoto J, Viyas B (2015) Microstructure and Li-ion conductivity of hot-pressed cubic LI7La3Zr2O12. J Amer Cera Soc 98(4):1209–1214. CrossRefGoogle Scholar
  15. 15.
    Li Y, Wang Z, Li C, Cao Y, Guo X (2014) Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J Power Sources 248:642–646. CrossRefGoogle Scholar
  16. 16.
    Janani N, Ramakumar S, Kannan S, Murugan R, Dunn B (2015) Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7Li3Zr2O12. J Amer Cera Soc 98(7):2039–2046. CrossRefGoogle Scholar
  17. 17.
    Choudhury S, Mangal R, Agrawal A, Archer LA (2015) A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun 6:10101. CrossRefGoogle Scholar
  18. 18.
    Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, Sagane F, Iriyama Y (2014) Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv Energy Mater 4(9):1301416. CrossRefGoogle Scholar
  19. 19.
    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochemi Commun 9(7):1486–1490. CrossRefGoogle Scholar
  20. 20.
    Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956. CrossRefGoogle Scholar
  21. 21.
    Wang Y, Liu Z, Zhu X, Tang Y, Huang F (2013) Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method. J Power Sources 224:225–229. CrossRefGoogle Scholar
  22. 22.
    Deng Y, Eames C, Chotard JN, Lalere F, Seznec V, Emge S, Pecher O, Grey CP, Masquelier C, Islam MS (2015) Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4-Li3PO4 solid electrolytes. J Am Chem Soc 137(28):9136–9145. CrossRefGoogle Scholar
  23. 23.
    Jin Y, McGinn PJ (2013) Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode. Electrochim Acta 89:407–412. CrossRefGoogle Scholar
  24. 24.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl 46(41):7778–7781. CrossRefGoogle Scholar
  25. 25.
    El Shinawi H, Janek J (2013) Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources 225:13–19. CrossRefGoogle Scholar
  26. 26.
    Wang D, Zhong G, Dolotko O, Li Y, McDonald MJ, Mi J, Fu R, Yang Y (2014) The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J Mater Chem A 2(47):20271–20279. CrossRefGoogle Scholar
  27. 27.
    Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 202:332–335. CrossRefGoogle Scholar
  28. 28.
    Du F, Zhao N, Li Y, Chen C, Liu Z, Guo X (2015) All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J Power Sources 300:24–28. CrossRefGoogle Scholar
  29. 29.
    Zheng J, Tang M, Hu Y (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed Engl 55(40):12538–12542. CrossRefGoogle Scholar
  30. 30.
    Liu W, Liu N, Sun J, Hsu P, Li Y, Lee H, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745. CrossRefGoogle Scholar
  31. 31.
    Kalita D, Lee S, Lee K, Ko D, Yoon Y (2012) Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries. Solid State Ionics 229:14–19. CrossRefGoogle Scholar
  32. 32.
    Lobe S, Dellen C, Finsterbusch M, Gehrke H, Sebold D, Tsai C, Uhlenbruck S, Guillon O (2016) Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J Power Sources 307:684–689. CrossRefGoogle Scholar
  33. 33.
    Tan J, Tiwari A (2012) Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. ECS Solid State Lett 1:4CrossRefGoogle Scholar
  34. 34.
    Kim S, Hirayama M, Taminato S, Kanno R (2013) Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. Dalton Trans 42(36):13112–13117. CrossRefGoogle Scholar
  35. 35.
    Chen R, Huang M, Huang W, Shen Y, Lin Y, Nan C (2014) Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries. J Mater Chem A 2(33):13277. CrossRefGoogle Scholar
  36. 36.
    Yan X, Li Z, Wen Z, Han W (2017) Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J Phys Chem C 121(3):1431–1435. CrossRefGoogle Scholar
  37. 37.
    Zhang J, Zhao N, Zhang M, Li Y, Chu P, Guo X, Di Z, Wang X, Li H (2016) Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28:447–454. CrossRefGoogle Scholar
  38. 38.
    Nowak S, Berkemeier F, Schmitz G (2015) Ultra-thin LiPON films—fundamental properties and application in solid state thin film model batteries. J Power Sources 275:144–150. CrossRefGoogle Scholar
  39. 39.
    Wu J, Pang W, Peterson V, Wei L, Guo X (2017) Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces 9(14):12461–12468. CrossRefGoogle Scholar
  40. 40.
    Yonemoto F, Nishimura A, Motoyama M, Tsuchimine N, Kobayashi S, Iriyama Y (2017) Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J Power Sources 343:207–215. CrossRefGoogle Scholar
  41. 41.
    Cabana J, Monconduit L, Larcher D, Palacin M (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192. CrossRefGoogle Scholar
  42. 42.
    Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO (R3m) for 4 volt secondary lithium cells. J Electrochem Soc 141(11):2972–2977. CrossRefGoogle Scholar
  43. 43.
    Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K (2013) All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J Solid State Electrochem 17(10):2551–2557. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xufeng Yan
    • 1
    • 2
    • 3
    • 4
  • Zhuobin Li
    • 1
  • Hangjun Ying
    • 1
  • Feng Nie
    • 1
  • Lixin Xue
    • 1
  • Zhaoyin Wen
    • 2
    • 3
    • 4
  • Wei-Qiang Han
    • 1
    • 2
    • 5
  1. 1.Ningbo Institute of Industrial TechnologyChinese Academy of ScienceNingboChina
  2. 2.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations