Ionics

pp 1–7 | Cite as

A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature

  • Xufeng Yan
  • Zhuobin Li
  • Hangjun Ying
  • Feng Nie
  • Lixin Xue
  • Zhaoyin Wen
  • Wei-Qiang Han
Short Communication
  • 284 Downloads

Abstract

A thin Li7La3Zr2O12 (LLZO) film of several micrometers was prepared by a novel method, which underwent the changes from micro-sized particles, nanoparticle slurry, and the final thin film. The LLZO film exhibited a high stability with metallic Li. The all-solid-state battery was composed by Li metal anode, a mixture cathode (LiCoO2 and LLZO), and the solid electrolyte of a composite of LLZO and LITFSI film. At room temperature, the Li/composite of LLZO and LITFSI/LCO cell showed a discharge capacity of 119.3 mAh g−1 at a current density of 0.21 mA cm−2 after 45 cycles, which was approximately 100% of that of the second cycle. Electrochemical impedance spectroscopy showed the reduction of the radius in low-frequency semicircle, demonstrating an improvement of interfacial contact between LLZO and LCO during the cycling.

Graphical abstract

Keywords

All-solid-state batteries Lithium batteries Solid electrolytes Garnets Membranes 

References

  1. 1.
    Armand M, Tarascon J (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  2. 2.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417.  https://doi.org/10.1021/cr030203g CrossRefGoogle Scholar
  3. 3.
    Zhou G, Li F, Cheng H (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7(4):1307–1338.  https://doi.org/10.1039/C3EE43182G CrossRefGoogle Scholar
  4. 4.
    Armand M, Tarascon J (2008) Building better batteries. Nature 451(7179):652–657.  https://doi.org/10.1038/451652a CrossRefGoogle Scholar
  5. 5.
    Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618.  https://doi.org/10.1021/cr500003w CrossRefGoogle Scholar
  6. 6.
    Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727.  https://doi.org/10.1039/c4cs00020j CrossRefGoogle Scholar
  7. 7.
    Felix B, Dias L, Jakobert B, Veldhuis J (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191CrossRefGoogle Scholar
  8. 8.
    Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 135(3):975–978.  https://doi.org/10.1021/ja3110895 CrossRefGoogle Scholar
  9. 9.
    Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540.  https://doi.org/10.1039/c0cs00081g CrossRefGoogle Scholar
  10. 10.
    Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516.  https://doi.org/10.1039/C6MH00218H CrossRefGoogle Scholar
  11. 11.
    Ma C, Chen K, Liang C, Nan CW, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7(5):1638.  https://doi.org/10.1039/c4ee00382a CrossRefGoogle Scholar
  12. 12.
    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1(4):16030.  https://doi.org/10.1038/nenergy.2016.30 CrossRefGoogle Scholar
  13. 13.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686.  https://doi.org/10.1038/nmat3066 CrossRefGoogle Scholar
  14. 14.
    David IN, Thompson T, Wolfenstine J, Allen JL, Sakamoto J, Viyas B (2015) Microstructure and Li-ion conductivity of hot-pressed cubic LI7La3Zr2O12. J Amer Cera Soc 98(4):1209–1214.  https://doi.org/10.1111/jace.13455 CrossRefGoogle Scholar
  15. 15.
    Li Y, Wang Z, Li C, Cao Y, Guo X (2014) Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J Power Sources 248:642–646.  https://doi.org/10.1016/j.jpowsour.2013.09.140 CrossRefGoogle Scholar
  16. 16.
    Janani N, Ramakumar S, Kannan S, Murugan R, Dunn B (2015) Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7Li3Zr2O12. J Amer Cera Soc 98(7):2039–2046.  https://doi.org/10.1111/jace.13578 CrossRefGoogle Scholar
  17. 17.
    Choudhury S, Mangal R, Agrawal A, Archer LA (2015) A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun 6:10101.  https://doi.org/10.1038/ncomms10101 CrossRefGoogle Scholar
  18. 18.
    Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, Sagane F, Iriyama Y (2014) Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv Energy Mater 4(9):1301416.  https://doi.org/10.1002/aenm.201301416 CrossRefGoogle Scholar
  19. 19.
    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochemi Commun 9(7):1486–1490.  https://doi.org/10.1016/j.elecom.2007.02.008 CrossRefGoogle Scholar
  20. 20.
    Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956.  https://doi.org/10.1021/cm901819c CrossRefGoogle Scholar
  21. 21.
    Wang Y, Liu Z, Zhu X, Tang Y, Huang F (2013) Highly lithium-ion conductive thio-LISICON thin film processed by low-temperature solution method. J Power Sources 224:225–229.  https://doi.org/10.1016/j.jpowsour.2012.09.097 CrossRefGoogle Scholar
  22. 22.
    Deng Y, Eames C, Chotard JN, Lalere F, Seznec V, Emge S, Pecher O, Grey CP, Masquelier C, Islam MS (2015) Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4-Li3PO4 solid electrolytes. J Am Chem Soc 137(28):9136–9145.  https://doi.org/10.1021/jacs.5b04444 CrossRefGoogle Scholar
  23. 23.
    Jin Y, McGinn PJ (2013) Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode. Electrochim Acta 89:407–412.  https://doi.org/10.1016/j.electacta.2012.11.059 CrossRefGoogle Scholar
  24. 24.
    Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl 46(41):7778–7781.  https://doi.org/10.1002/anie.200701144 CrossRefGoogle Scholar
  25. 25.
    El Shinawi H, Janek J (2013) Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources 225:13–19.  https://doi.org/10.1016/j.jpowsour.2012.09.111 CrossRefGoogle Scholar
  26. 26.
    Wang D, Zhong G, Dolotko O, Li Y, McDonald MJ, Mi J, Fu R, Yang Y (2014) The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J Mater Chem A 2(47):20271–20279.  https://doi.org/10.1039/C4TA03591G CrossRefGoogle Scholar
  27. 27.
    Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 202:332–335.  https://doi.org/10.1016/j.jpowsour.2011.10.064 CrossRefGoogle Scholar
  28. 28.
    Du F, Zhao N, Li Y, Chen C, Liu Z, Guo X (2015) All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J Power Sources 300:24–28.  https://doi.org/10.1016/j.jpowsour.2015.09.061 CrossRefGoogle Scholar
  29. 29.
    Zheng J, Tang M, Hu Y (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed Engl 55(40):12538–12542.  https://doi.org/10.1002/anie.201607539 CrossRefGoogle Scholar
  30. 30.
    Liu W, Liu N, Sun J, Hsu P, Li Y, Lee H, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745.  https://doi.org/10.1021/acs.nanolett.5b00600 CrossRefGoogle Scholar
  31. 31.
    Kalita D, Lee S, Lee K, Ko D, Yoon Y (2012) Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries. Solid State Ionics 229:14–19.  https://doi.org/10.1016/j.ssi.2012.09.011 CrossRefGoogle Scholar
  32. 32.
    Lobe S, Dellen C, Finsterbusch M, Gehrke H, Sebold D, Tsai C, Uhlenbruck S, Guillon O (2016) Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J Power Sources 307:684–689.  https://doi.org/10.1016/j.jpowsour.2015.12.054 CrossRefGoogle Scholar
  33. 33.
    Tan J, Tiwari A (2012) Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. ECS Solid State Lett 1:4CrossRefGoogle Scholar
  34. 34.
    Kim S, Hirayama M, Taminato S, Kanno R (2013) Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. Dalton Trans 42(36):13112–13117.  https://doi.org/10.1039/c3dt51795k CrossRefGoogle Scholar
  35. 35.
    Chen R, Huang M, Huang W, Shen Y, Lin Y, Nan C (2014) Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries. J Mater Chem A 2(33):13277.  https://doi.org/10.1039/C4TA02289K CrossRefGoogle Scholar
  36. 36.
    Yan X, Li Z, Wen Z, Han W (2017) Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J Phys Chem C 121(3):1431–1435.  https://doi.org/10.1021/acs.jpcc.6b10268 CrossRefGoogle Scholar
  37. 37.
    Zhang J, Zhao N, Zhang M, Li Y, Chu P, Guo X, Di Z, Wang X, Li H (2016) Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28:447–454.  https://doi.org/10.1016/j.nanoen.2016.09.002 CrossRefGoogle Scholar
  38. 38.
    Nowak S, Berkemeier F, Schmitz G (2015) Ultra-thin LiPON films—fundamental properties and application in solid state thin film model batteries. J Power Sources 275:144–150.  https://doi.org/10.1016/j.jpowsour.2014.10.202 CrossRefGoogle Scholar
  39. 39.
    Wu J, Pang W, Peterson V, Wei L, Guo X (2017) Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces 9(14):12461–12468.  https://doi.org/10.1021/acsami.7b00614 CrossRefGoogle Scholar
  40. 40.
    Yonemoto F, Nishimura A, Motoyama M, Tsuchimine N, Kobayashi S, Iriyama Y (2017) Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J Power Sources 343:207–215.  https://doi.org/10.1016/j.jpowsour.2017.01.009 CrossRefGoogle Scholar
  41. 41.
    Cabana J, Monconduit L, Larcher D, Palacin M (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22(35):E170–E192.  https://doi.org/10.1002/adma.201000717 CrossRefGoogle Scholar
  42. 42.
    Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO (R3m) for 4 volt secondary lithium cells. J Electrochem Soc 141(11):2972–2977.  https://doi.org/10.1149/1.2059267 CrossRefGoogle Scholar
  43. 43.
    Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K (2013) All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J Solid State Electrochem 17(10):2551–2557.  https://doi.org/10.1007/s10008-013-2149-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xufeng Yan
    • 1
    • 2
    • 3
    • 4
  • Zhuobin Li
    • 1
  • Hangjun Ying
    • 1
  • Feng Nie
    • 1
  • Lixin Xue
    • 1
  • Zhaoyin Wen
    • 2
    • 3
    • 4
  • Wei-Qiang Han
    • 1
    • 2
    • 5
  1. 1.Ningbo Institute of Industrial TechnologyChinese Academy of ScienceNingboChina
  2. 2.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations