Skip to main content

Advertisement

Log in

Impacts of lithium tetrafluoroborate and lithium difluoro(oxalate)borate as additives on the storage life of Li-ion battery at elevated temperature

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The impacts of boron-based Li salt additives including lithium tetrafluoroborate (LiBF4) and lithium difluoro(oxalate)borate (LDFOB) on the storage life of Li-ion battery at elevated temperature are investigated. Adding 1 wt% additives in the electrolyte significantly affects the storage life of the LiNi0.8Co0.15Al0.05O2/graphite full cell at 55 °C. The anode solid electrolyte interphase (SEI), preventing the loss of Li+ and e in anode, is the key factor affecting the storage life. The formation and aging of SEI on the graphite anode with and without additives are investigated. It is found that the SEI formed with the addition of LiBF4 is thick and loose due to LiF crystals produced by the decomposition of LiBF4 and the SEI cannot prevent the Li+ and e loss in anode and the decomposition of the electrolyte solvent, resulting in shorter storage life of the battery. On the contrary, the SEI formed with the addition of LDFOB is thick and compact due to formation of the lithium oxalate in the SEI, produced by the decomposition of LDFOB. The SEI efficiently inhibits decomposition of the electrolyte solvent on anode and makes a longer storage life of the battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jungst RG, Nagasubramanian G, Case HL, Liaw BY, Urbina A, Paez TL, Doughty DH (2003) Accelerated calendar and pulse life analysis of lithium-ion cells. J Power Sources 119–121:870–873

    Article  CAS  Google Scholar 

  2. Thomas EV, Case HL, Doughty DH, Jungst RG, Nagasubramanian G, Roth EP (2003) Accelerated power degradation of Li-ion cells. J Power Sources 124(1):254–260. https://doi.org/10.1016/S0378-7753(03)00729-8

    Article  CAS  Google Scholar 

  3. Christophersen JP, Bloom I, Thomas E, Battaglia V (2012) Battery Calendar Life Estimator Manual Modeling and Simulation.INL/EXT-08-15136

  4. Agubra V, Fergus J (2013) Lithium ion battery anode aging mechanisms. Materials 6(4):1310–1325. https://doi.org/10.3390/ma6041310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D (2013) A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J Power Sources 241:680–689. https://doi.org/10.1016/j.jpowsour.2013.05.040

    Article  CAS  Google Scholar 

  6. Sarre G, Blanchard P, Broussely M (2004) Aging of lithium-ion batteries. J Power Sources 127(1-2):65–71. https://doi.org/10.1016/j.jpowsour.2003.09.008

    Article  CAS  Google Scholar 

  7. Wu X, Li Y, Xiang Y, Liu Z, He Z, Wu X, Li Y, Xiong L, Li C, Chen J (2016) The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J Power Sources 336:35–39. https://doi.org/10.1016/j.jpowsour.2016.10.053

    Article  CAS  Google Scholar 

  8. Käbitz S, Gerschler JB, Ecker M, Yurdagel Y, Emmermacher B, André D, Mitsch T, Sauer DU (2013) Cycle and calendar life study of a graphite|LiNi 1/3 Mn 1/3 Co 1/3 O 2 Li-ion high energy system. Part A: full cell characterization. J Power Sources 239:572–583. https://doi.org/10.1016/j.jpowsour.2013.03.045

    Article  CAS  Google Scholar 

  9. Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1-2):269–281. https://doi.org/10.1016/j.jpowsour.2005.01.006

    Article  CAS  Google Scholar 

  10. Abraham DP, Twesten RD, Balasubramanian M, Kropf J, Fischer D, Mcbreen J, Petrov I, Amine K (2003) Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells. J Electrochem Soc 150(11):A1450–A1456. https://doi.org/10.1149/1.1613291

    Article  CAS  Google Scholar 

  11. Abraham DP, Twesten RD, Balasubramanian M, Petrov I, Mcbreen J, Amine K (2002) Surface changes on LiNi 0.8 Co 0.2 O 2 particles during testing of high-power lithium-ion cells. Electrochem Commun 4(8):620–625. https://doi.org/10.1016/S1388-2481(02)00388-0

    Article  CAS  Google Scholar 

  12. Watanabe S, Kinoshita M, Nakura K (2011) Comparison of the surface changes on cathode during long term storage testing of high energy density cylindrical lithium-ion cells. J Power Sources 196(16):6906–6910. https://doi.org/10.1016/j.jpowsour.2010.12.028

    Article  CAS  Google Scholar 

  13. Sasaki T, Nonaka T, Oka H, Okuda C, Itou Y, Kondo Y, Takeuchi Y, Ukyo Y, Tatsumi K, Muto S (2009) Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries: I. Analysis by electrochemical and spectroscopic examination. J Electrochem Soc 156(4):A289–A293. https://doi.org/10.1149/1.3076136

    Article  CAS  Google Scholar 

  14. Ukyo Y, Takeuchi Y, Horibuchi K, Sasaki T, Tatsumi K, Sasano Y, Muto S (2009) Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries II. Diagnostic analysis by electron microscopy and spectroscopy. J Electrochem Soc 156:A371–A377

    Article  CAS  Google Scholar 

  15. Bryngelsson H, Stjerndahl M, Gustafsson T, Edström K (2007) How dynamic is the SEI? J Power Sources 174(2):970–975. https://doi.org/10.1016/j.jpowsour.2007.06.050

    Article  CAS  Google Scholar 

  16. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  17. Li S, Xu X, Shi X, Li B, Zhao Y, Zhang H, Li Y, Zhao W, Cui X, Mao L (2012) Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane. J Power Sources 217:503–508. https://doi.org/10.1016/j.jpowsour.2012.05.114

    Article  CAS  Google Scholar 

  18. Xu M, Liu Z, Hao L, Xing L, Li W, Lucht BL (2011) Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J Power Sources 196(16):6794–6801. https://doi.org/10.1016/j.jpowsour.2010.10.050

    Article  CAS  Google Scholar 

  19. Karaal Ş, Köse H, Aydin AO, Akbulut H (2015) The effect of LiBF 4 concentration on the discharge and stability of LiMn 2 O 4 half cell Li ion batteries. Mater Sci Semicond Process 38:397–403. https://doi.org/10.1016/j.mssp.2015.04.018

    Article  CAS  Google Scholar 

  20. Zhou H, Xiao K, Li J (2016) Lithium difluoro(oxalate)borate and LiBF 4 blend salts electrolyte for LiNi 0.5 Mn 1.5 O 4 cathode material. J Power Sources 302:274–282. https://doi.org/10.1016/j.jpowsour.2015.10.073

    Article  CAS  Google Scholar 

  21. Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ (2001) Aging mechanism in Li ion cells and calendar life predictions. J Power Sources 97-98:13–21. https://doi.org/10.1016/S0378-7753(01)00722-4

    Article  CAS  Google Scholar 

  22. Spotnitz R (2003) Simulation of capacity fade in lithium-ion batteries. J Power Sources 113(1):72–80. https://doi.org/10.1016/S0378-7753(02)00490-1

    Article  CAS  Google Scholar 

  23. Pinson MB, Bazant MZ (2012) Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J Electrochem Soc 160(2):A243–A250. https://doi.org/10.1149/2.044302jes

    Article  CAS  Google Scholar 

  24. Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL (2016) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:254–263

    Google Scholar 

  25. Agubra VA, Fergus JW (2014) The formation and stability of the solid electrolyte interface on the graphite anode. J Power Sources 268:153–162. https://doi.org/10.1016/j.jpowsour.2014.06.024

    Article  CAS  Google Scholar 

  26. Andersson AM, Henningson A, Siegbahn H, Jansson U, Edström K (2002) Electrochemically lithiated graphite characterised by photoelectron spectroscopy. J Power Sources 119–121:522–527

    Google Scholar 

  27. Zhang SS, Xu K, Jow TR (2006) EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta 51(8-9):1636–1640. https://doi.org/10.1016/j.electacta.2005.02.137

    Article  CAS  Google Scholar 

  28. Reichert DAM, Rösmann A, Janssen P, Bremes HG, Sauer DU, Passerini S, Winter M (2013) Influence of relaxation time on the lifetime of commercial lithium-ion cells. J Power Sources 239:45–53. https://doi.org/10.1016/j.jpowsour.2013.03.053

    Article  CAS  Google Scholar 

  29. Zhang SS, Xu K, Jow TR (2004) Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim Acta 49(7):1057–1061. https://doi.org/10.1016/j.electacta.2003.10.016

    Article  CAS  Google Scholar 

  30. Dedryvère R, Gireaud L, Grugeon S, Laruelle S, Tarascon JM, Gonbeau D (2005) Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. J Phys Chem B 109(33):15868–15875. https://doi.org/10.1021/jp051626k

    Article  CAS  PubMed  Google Scholar 

  31. Hellqvist Kjell M, Malmgren S, Ciosek K, Behm M, Edström K, Lindbergh G (2013) Comparing aging of graphite/LiFePO4 cells at 22 °C and 55 °C—electrochemical and photoelectron spectroscopy studies. J Power Sources 243:290–298. https://doi.org/10.1016/j.jpowsour.2013.06.011

    Article  CAS  Google Scholar 

  32. Dedryvère R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D (2007) Surface film formation on electrodes in a LiCoO 2 /graphite cell: a step by step XPS study. J Power Sources 174(2):462–468. https://doi.org/10.1016/j.jpowsour.2007.06.033

    Article  CAS  Google Scholar 

  33. Eshkenazi V, Peled E, Burstein L, Golodnitsky D (2004) XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics 170(1-2):83–91. https://doi.org/10.1016/S0167-2738(03)00107-3

    Article  CAS  Google Scholar 

  34. Lee SH, Jo IS, Kim J (2014) Surface analysis of the solid electrolyte interface formed by additives on graphite electrodes in Li-ion batteries using XPS, FE-AES, and XHR-SEM techniques. Surf Interface Anal 46(8):570–576. https://doi.org/10.1002/sia.5575

    Article  CAS  Google Scholar 

  35. Ostrovskii D, Ronci F, Scrosati B, Jacobsson P (2001) A FTIR and Raman study of spontaneous reactions occurring at the LiNi y Co (1− y ) O 2 electrode/non-aqueous electrolyte interface. J Power Sources 94(2):183–188. https://doi.org/10.1016/S0378-7753(00)00584-X

    Article  CAS  Google Scholar 

  36. Aurbach D, Pollak E, Ran E, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156:40–45

    Article  CAS  Google Scholar 

  37. Li J, Li H, Wang Z, Chen L, Huang X (2002) The study of surface films formed on SnO anode in lithium rechargeable batteries by FTIR spectroscopy. J Power Sources 107(1):1–4. https://doi.org/10.1016/S0378-7753(01)00964-8

    Article  CAS  Google Scholar 

  38. Xu K, Lee U, Zhang SS, Jow TR (2004) Graphite/electrolyte interface formed in LiBOB-based electrolytes, II. Potential dependence of surface chemistry on graphitic anodes. J Electrochem Soc 151(12):A2106–A2112. https://doi.org/10.1149/1.1812732

    Article  CAS  Google Scholar 

  39. Hu M, Wei J, Xing L, Zhou Z (2012) Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. J Appl Electrochem 42(5):291–296. https://doi.org/10.1007/s10800-012-0398-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Project of National University of Defense Technology (Grant No. ZDYYJCYJ 20140701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Chunman Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xie, K., Pan, Y. et al. Impacts of lithium tetrafluoroborate and lithium difluoro(oxalate)borate as additives on the storage life of Li-ion battery at elevated temperature. Ionics 24, 1617–1628 (2018). https://doi.org/10.1007/s11581-017-2350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2350-0

Keywords

Navigation