Skip to main content
Log in

Multiwalled carbon nanotube supported Pt–Sn–M (M = Ru, Ni, and Ir) catalysts for ethanol electrooxidation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present study, Pt–Sn–M (M = Ru, Ni, and Ir) nanocatalysts were supported on multiwalled carbon nanotube and their electrocatalytic activity for ethanol oxidation in membraneless fuel cells was investigated. The combination of monometallic Pt/MWCNTs, bi-metallic Pt–Sn/MWCNTs, and tri-metallic Pt–Sn–Ru/MWCNT, Pt–Sn–Ni/MWCNT, and Pt–Sn–Ir/MWCNT nanocatalysts were prepared by the ultrasonic assisted chemical reduction method. Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) were used for the catalyst characterization. The electrocatalytic activities of the catalysts were investigated in half-cell experiments using cyclic voltammetry (CV), CO stripping voltammetry, and chronoamperometry (CA). During the experiments performed on a single membraneless ethanol fuel cell (MLEFC), the Pt–Sn–Ir/MWCNTs exhibited a better catalytic activity from among all the catalysts prepared, with a power density of 39.25 mW cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38(22):9438–9453. https://doi.org/10.1016/j.ijhydene.2012.07.059

    Article  CAS  Google Scholar 

  2. Brouzgou A, Podias A, Tsjakaras P (2013) PEMFCs and AMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43(2):119–136. https://doi.org/10.1007/s10800-012-0513-2

    Article  CAS  Google Scholar 

  3. Wang F, Zheng Y, Guo Y (2010) The promoting effect of europium on PtSn/C catalyst for ethanol oxidation. J Fuel Cells 6:1100–1107

    Article  CAS  Google Scholar 

  4. Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ, Xin Q, Douvartzides S, Goula M, Tsiakara P (2004) Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J Power Sources 126(1-2):16–22. https://doi.org/10.1016/j.jpowsour.2003.08.009

    Article  CAS  Google Scholar 

  5. Colmati F, Antolini E, Gonzalez ER (2007) Ethanol oxidation on a carbon-supported Pt75Sn25electrocatalyst prepared by reduction with formic acid: effect of thermal treatment. J Appl Catal B 73(1-2):106–115. https://doi.org/10.1016/j.apcatb.2006.06.013

    Article  CAS  Google Scholar 

  6. Zhou WJ, Li WZ, Song SQ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Pouliantis K, Kontou S, Tsiakara P (2004) Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. J Power Sources 131(1-2):217–223. https://doi.org/10.1016/j.jpowsour.2003.12.040

    Article  CAS  Google Scholar 

  7. Delbecq F, Vigne F (2005) Acetaldehyde on Pt(111) and Pt/Sn(111): a DFT study of the adsorption structures and of the vibrational spectra. J Phys Chem B 109(21):10797–10806. https://doi.org/10.1021/jp045207j

    Article  CAS  PubMed  Google Scholar 

  8. Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrog Energy 37(5):4597–4605. https://doi.org/10.1016/j.ijhydene.2011.05.188

    Article  CAS  Google Scholar 

  9. Lee E, Murthy A, Manthiram A (2011) Effect of Mo addition on the electrocatalytic activity of Pt–Sn–Mo/C for direct ethanol fuel cells. Electrochim Acta 56(3):1611–1618. https://doi.org/10.1016/j.electacta.2010.10.086

    Article  CAS  Google Scholar 

  10. Ribeiro J, dos Anjos DM, Leger J-M, Hahn F, Olivi P, de Andrade AR, Tremiliso-Filho G, Kokoh KB (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38(5):653–662. https://doi.org/10.1007/s10800-008-9484-8

    Article  CAS  Google Scholar 

  11. Mei W, Yougwei H, Ruixue L, Ma Z, Zhonghua Z, Xiaoguang W (2013) Preparation and characterization of micro-arc-induced Pd/TM (TM = Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation. Electrochim Acta 114:500–508

    Article  CAS  Google Scholar 

  12. Fuchun Z, Guanshui M, Zhongchao B, Ruiqiang H, Bin T, Zhonghua Z, Xiaoguang W (2013) High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J Power Sources 242:610–620

    Article  CAS  Google Scholar 

  13. Fuchun Z, Mei W, Yongwei H, Guanshui M, Zhonghua Z, Xiaoguang W (2014) A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim Acta 148:291–301

    Article  CAS  Google Scholar 

  14. Mei W, Yougwei H, Ruixue L, Ma Z, Zhonghua Z, Xiaoguang W (2015) Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochim Acta 178:259–269

    Article  CAS  Google Scholar 

  15. Mei W, Zizai M, Ruixue L, Bin T, Xiao-Qing B, Zhonghua Z (2017) Novel flower-like PdAu(Cu) anchoring on a3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation. Electrochim Acta 227:330–344

    Article  CAS  Google Scholar 

  16. Prabhuram J, Zhao TS, Tang ZK, Chen R, Liang ZX (2006) Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J Phys Chem B 110(11):5245–5252. https://doi.org/10.1021/jp0567063

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto T, Komatsu T (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 7:840

    Article  CAS  Google Scholar 

  18. Matsumoto T, Nagashima Y, Yamazaki T, Nakamura J (2006) Fuel cell anode composed of Mo2C catalyst and carbon nanotube electrodes. Electrochem Solid State lett 9(3):A160–A162. https://doi.org/10.1149/1.2165707

    Article  CAS  Google Scholar 

  19. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Carbon nanotube materials for hydrogen storage. Nature 386(6623):377–379. https://doi.org/10.1038/386377a0

    Article  CAS  Google Scholar 

  20. Collins PG, Zettl A, Bando H, Thess A, Smalley RE (1997) Nanotube nanodevice. Science 278(5335):100–102. https://doi.org/10.1126/science.278.5335.100

    Article  CAS  Google Scholar 

  21. Radmilovic V, Gasteiger HA, Ross PN (1995) Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J Catal 154(1):98–106. https://doi.org/10.1006/jcat.1995.1151

    Article  CAS  Google Scholar 

  22. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868. https://doi.org/10.1038/nmat1500

    Article  CAS  Google Scholar 

  23. Hanh HD, Dong NT, Okitsu K, Nishimura R, Maeda Y (2009) Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field. Renew Energy 34(3):766–768. https://doi.org/10.1016/j.renene.2008.04.007

    Article  CAS  Google Scholar 

  24. Lin CC, Hsiao MC, Liao PH (2012) Ultrasonic-assisted production of biodiesel from waste frying oil using a two-step catalyzing process. J Sustain Bioenergy Syst 2(04):117–121. https://doi.org/10.4236/jsbs.2012.24018

    Article  CAS  Google Scholar 

  25. Spinace EV, Linardi M, Neto AO (2005) Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt–Sn electrocatalysts. Electrochem Commun 7(4):365–369. https://doi.org/10.1016/j.elecom.2005.02.006

    Article  CAS  Google Scholar 

  26. Xiaoguang W, Weimin W, Zhen Q (2012) Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electro-oxidation. Int J Hydrog Energy 37:2579–2587

    Article  CAS  Google Scholar 

  27. Xiaoguang W, Weimin W, Zhen Q, Changchun Z, Hong J, Zhonghua Z (2010) Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation. J Power Sources 195:6740–6747

    Article  CAS  Google Scholar 

  28. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563(1):81–89. https://doi.org/10.1016/j.jelechem.2003.08.019

    Article  CAS  Google Scholar 

  29. Goetz M, Wendt H (1998) Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim Acta 43(24):3637–3644. https://doi.org/10.1016/S0013-4686(98)00121-2

    Article  Google Scholar 

  30. Wang ZB, Yin GP, Shi PF, Sun YC (2006) Novel Pt–Ru–Ni/C catalysts for methanol electro-oxidation in acid medium. Electrochem Solid State Lett 9(1):A13. https://doi.org/10.1149/1.2133722

    Article  CAS  Google Scholar 

  31. Liang YM, Zhang HM, Tian ZQ, Zhu XB, Wang XL, Yi BL (2006) Synthesis and structure–activity relationship exploration of carbon-supported PtRuNi Nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells. J Phys Chem B 110(15):7828–7834. https://doi.org/10.1021/jp0602732

    Article  CAS  PubMed  Google Scholar 

  32. Somorjai GA (1990) Modern concepts in surface science and heterogeneous catalysis. J Phys Chem 94(3):1013–1023. https://doi.org/10.1021/j100366a001

    Article  CAS  Google Scholar 

  33. Chen G, Delafuente DA, Sarangapani S, Mallouk TE (2001) Combinatorial discovery of bifunctional oxygen reduction—water oxidation electrocatalysts for regenerative fuel cells. Catal Today 67(4):341–355. https://doi.org/10.1016/S0920-5861(01)00327-3

    Article  CAS  Google Scholar 

  34. Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B 102(49):9997–10003. https://doi.org/10.1021/jp982887f

    Article  CAS  Google Scholar 

  35. Ponmani K, Nayeemusia SM, Kiruthika S, Muthukuamran B (2016) Electrochemical characterization of platinum-based anode catalysts for membraneless fuel cells. Ionics 22(3):377–387. https://doi.org/10.1007/s11581-015-1555-3

    Article  CAS  Google Scholar 

  36. Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Shuquin S, Liu J, Sun G, Xin Q (2003) Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chem Commun 394:1

    Google Scholar 

  37. Biegler T, Rand DAJ, Woods R (1971) Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. J Electroanal Chem 29(2):269–277. https://doi.org/10.1016/S0022-0728(71)80089-X

    Article  CAS  Google Scholar 

Download references

Funding

The financial support for this research from the University Grants Commission (UGC), New Delhi, India, through a Major Research Project 42-325/20134 (SR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thilaga, S., Durga, S., Selvarani, V. et al. Multiwalled carbon nanotube supported Pt–Sn–M (M = Ru, Ni, and Ir) catalysts for ethanol electrooxidation. Ionics 24, 1721–1731 (2018). https://doi.org/10.1007/s11581-017-2349-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2349-6

Keywords

Navigation