, Volume 24, Issue 6, pp 1841–1853 | Cite as

Photoelectrocatalytic activity of immobilized Fe2O3 photoelectrode for degradation of salicylic acid and methyl orange dye under visible light illumination

  • R. D. Suryavanshi
  • S. V. Mohite
  • A. A. Bagade
  • K. Y. RajpureEmail author
Original Paper


Fe2O3 thin films have been successfully synthesized by chemical spray pyrolysis technique. The effect of solution quantities onto the photoelectrochemical (PEC), structural, morphological, and optical properties has been studied. Film prepared at 50 ml solution quantity shows the maximum photoelectrochemical performance in 0.1 M NaOH electrolyte. X-ray diffraction studies reveal that the synthesized Fe2O3 thin films are polycrystalline with rhombohedral crystal structure. The surface morphology of Fe2O3 thin films shows that needle-shaped grains have slowly converted into round-shaped grains. The estimated band gap energy of Fe2O3 films varies from 2.02 to 2.15 eV with respect to quantities of spraying solution and it exhibits absorption in visible region. The photoelectrocatalytic degradation process shows better removal efficiency of organic compounds as compared to photocatalytic process for degradation of salicylic acid (SA) using large area (100 cm2) Fe2O3 photoelectrode under visible light illumination. Further, photoelectrocatalytic degradation process have been employed for degradation of colorant organic compound such as methyl orange (MO) dye.


Fe2O3 thin films Spray pyrolysis technique Mott-Schottky analysis Photocatalysis Salicylic acid Methyl orange dyes 



The authors are very much thankful to DST (SERB), New Delhi for the financial support through the Major Research Project No. SB/S2/CMP-0041/2013.


  1. 1.
    Selvakumar KV, Badarinarayanan NS, Umesh A, Ezhilkumar P, Yuvanashree E (2016) Acid dye degradation using electrochemical batch recirculation flow reactor. J Chem Pharm Sci 9:308–312Google Scholar
  2. 2.
    Zakaria ES, Ashtoukhy E (2013) Removal of indigo carmine dye from synthetic wastewater by electrochemical oxidation in a new cell with horizontally oriented electrodes. Int J Electrochem Sci 8:846–858Google Scholar
  3. 3.
    Mohan N, Balasubramanian N, Basha CA (2007) Electrochemical oxidation of textile wastewater and its reuse. J Hazard Mater 147(1-2):644–651. CrossRefPubMedGoogle Scholar
  4. 4.
    Pearce CI, Lloyd JT, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments 58:179–196.
  5. 5.
    Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today 147(1):1–59. CrossRefGoogle Scholar
  6. 6.
    Wang JL, Xu LJ (2012) Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit Rev Env Sci Technol 42(3):251–325. CrossRefGoogle Scholar
  7. 7.
    Kottegoda IRM, Colomboge HCDP, Karunadasa KSP, Samarawickrama DS, Manorathne CH (2013) An efficient reactor for purification of domestic water using solar energy. Int J Energy Eng 3(3):93–98. CrossRefGoogle Scholar
  8. 8.
    Mills A, Hunte SL, Photochem J (1997) An overview of semiconductor photocatalysis. Photobiol A: Chem 108(1):1–35. CrossRefGoogle Scholar
  9. 9.
    Shinde PS, Patil PS, Bhosale PN, Bruger A, Nauer G, Neumann-Spallart M, Bhosale CH (2009) UVA and solar light assisted photoelectrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films. Appl Catal B Environ 89(1-2):288–294. CrossRefGoogle Scholar
  10. 10.
    Matsumoto Y, Ohsawa T, Takahashi R, Koinuma H (2005) Surface termination effect on the photocatalysis on atomically controlled SrTiO3(001) surface. Thin Solid Films 486(1-2):11–14. CrossRefGoogle Scholar
  11. 11.
    Gao J, Jiang R, Wang J, Wang B, Li K, Kang P, Li Y, Zhang X (2011) Sonocatalytic performance of Er3+:YAlO3/TiO2–Fe2O3 in organic dye degradation. Chem Eng J 168(3):1041–1048. CrossRefGoogle Scholar
  12. 12.
    Sapkal RT, Shinde SS, Rajpure KY, Bhosale CH (2013) Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films. J Semicond 34:1–3.
  13. 13.
    Shinde SS, Bansode RA, Bhosale CH, Rajpure KY (2010) Physical properties of hematite -Fe2O3 thin films: application to photoelectrochemical solar cells. J Semicond 31:1–8.
  14. 14.
    Taffa DH, Hamm I, Dunkel C, Sinev I, Michael Wark DB (2015) Electrochemical deposition of Fe2O3in the presence of organic additives: a route to enhanced photoactivity. RSC Adv 5(125):103512–103522. CrossRefGoogle Scholar
  15. 15.
    Sun TW, Zhu YJ, Qi C, Ding GJ, Chen F, Wu J (2016) α-Fe 2 O 3 nanosheet-assembled hierarchical hollow mesoporous microspheres: Microwave-assisted solvothermal synthesis and application in photocatalysis. J Colloid Interface Sci 463:107–117. CrossRefPubMedGoogle Scholar
  16. 16.
    Attie MF, Gill JJR, Stock JL, Spiegel AM, Downs JRW, Levine MA, Marx SJ (1983) Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J Clin Invest 72(2):667–676. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang JR, Bao J, Fan X, Dai W, Mei X (2016) pH-Switchable vitamin B9gels for stoichiometry-controlled spherical co-crystallization. Chem Commun 52(92):13452–13455. CrossRefGoogle Scholar
  18. 18.
    Zhao ZB, Zheng HX, Wei YG, Liu J (2007) Synthesis of azo derivatives of 4-aminosalicylic acid. Chin Chem Lett 18(6):639–642. CrossRefGoogle Scholar
  19. 19.
    Dhaneshwar SS, World J (2014) Colon-specific prodrugs of 4-aminosalicylic acid forinflammatory bowel disease. Gastroenterol 20:3564–3571.
  20. 20.
    Wallace GF (2010) Dermatologic causes of heel pain. Clin Podiatr Med Surg 27(3):407–416.
  21. 21.
    Hassoni MH, Sahib NJ (2016) The concentration effects on preparation of (Fe2O3) nanoparticle by chemical spray pyrolysis (CSP) technique. Journal of Multidisciplinary Engineering Science Studies 2:527–531Google Scholar
  22. 22.
    Kawahara T, Yamada K, Tada H (2006)Visible light photocatalytic decomposition of 2-naphthol by anodic-biased α-Fe2O3 film. J Colloid Interface Sci 294:504–507.
  23. 23.
    Alvarez JAL, Ruiz VFM, Rincon JJ, Ramirez IM, Reyes CF, Gutierrez RS (2015)Removal of direct dyes with alginic acid. J Mex Chem Soc 59:215–228Google Scholar
  24. 24.
    Kumbhar SS, Mahadik MA, Shinde SS, Rajpure KY, Bhosale CH (2015) Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. J. Photochem Photobiol B: Biol 142:118–123. CrossRefGoogle Scholar
  25. 25.
    Mahadik MA, Shinde SS, Kumbhar SS, Pathan HM, Rajpure KY, Bhosale CH (2015) Enhanced photocatalytic activity of sprayed Au doped ferric oxide thin films for salicylic acid degradation in aqueous medium. J Photochem Photobiol B 142:43–50. CrossRefPubMedGoogle Scholar
  26. 26.
    Avila JR, Kim DW, Rimoldi M, Farha OK, Hupp JT (2015) Fabrication of thin films of α-Fe2O3via atomic layer deposition using iron bisamidinate and water under mild growth conditions. ACS Appl Mater Interfaces 7(30):16138–16142. CrossRefPubMedGoogle Scholar
  27. 27.
    Chen QW, Qian YT, Qian H, Chen ZY, Wu WB, Zhang YH (1995) Preparation and characterization of iron(III) oxide (α-Fe2O3) thin films hydrothermally. Mater Res Bull 30(4):443–446. CrossRefGoogle Scholar
  28. 28.
    Dawy M, Safaa K, Mahy E, Aziz EA (2012) Synthesis, characterization and electrical properties of α- Fe2O3 nanoparticle. Aust J Basic Appl Sci 6:55–62Google Scholar
  29. 29.
    Bahedi K, Addou M, Dghoughi L, Haoutti ME, Cherrad H, Jbilou M, Bayoud S, Diani M (2016) Elaboration, characterisation and electrochemical properties of calcium doped iron oxide thin films prepared by spray pyrolysis. J Mater Environ Sci 7:560–565Google Scholar
  30. 30.
    Cha HG, Kim CW, Kim YH, Jung MH, Ji ES, Das BK, Kim JC, Kang YS (2009) Preparation and characterization of α-Fe2O3 nanorod-thin film by metal–organic chemical vapor deposition. Thin Solid Films 517(5):1853–1856. CrossRefGoogle Scholar
  31. 31.
    Abass KH (2015) Fe2O3 thin films prepared by spray pyrolysis technique and study the annealing on its optical properties. Int Lett Chem Phys Astron 6:24–31Google Scholar
  32. 32.
    Mohite SV, Rajpure KY (2015) Oxidative degradation of salicylic acid by sprayed WO3 photocatalyst. Mater Sci Eng B 200:78–83.
  33. 33.
    Mahadik MA, Shinde SS, Mohite VS, Kumbhar SS, Rajpure KY, Moholkar AV, Bhosale CH (2014) Photoelectrocatalytic activity of ferric oxide nanocatalyst: a synergestic effect of thickness. Ceram Int 40(7):9463–9471. CrossRefGoogle Scholar
  34. 34.
    Pawar SM, Moholkar AV, Rajpure KY, Bhosale CH (2008) Photoelectrochemical investigations on electrochemically deposited CdSe and Fe-doped CdSe thin films. Sol Energy Mater Sol Cells 92(1):45–49. CrossRefGoogle Scholar
  35. 35.
    Ganbavle VV, Mohite SV, Agawane GL, Kim JH, Rajpure KY (2015) Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: effect of film thickness. J Colloid Interface Sci 451:245–254. CrossRefPubMedGoogle Scholar
  36. 36.
    Babar AR, Shinde SS, Moholkar AV, Bhosale CH, Kim JH, Rajpure KY (2011)Physical properties of sprayed antimony doped tin oxide thin films: the role of thickness. J Semicond 5:1–8.
  37. 37.
    Mahadik MA, Shinde SS, Rajpure KY, Bhosale CH (2013) Photocatalytic oxidation of Rhodamine B with ferric oxide thin films under solar illumination. Mater Res Bull 48(10):4058–4065. CrossRefGoogle Scholar
  38. 38.
    Bousslamaa W, Elhouichet H, Férid M (2017) Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation. Optik 134:88–98. CrossRefGoogle Scholar
  39. 39.
    Kouotou PM, Tian Z-Y, Vieker H, Beyer A, Armin Golzhauserb KK, Hoinghausa J (2013) Selective synthesis of α-Fe2O3 thin films and effect of the deposition temperature and lattice oxygen on the catalytic combustion of propene. Mater Chem A 1(35):10495–10504. CrossRefGoogle Scholar
  40. 40.
    Goyal RN, Kaur D, Pandey AK (2009) Growth and characterization of iron oxide nanocrystalline thin films via low-cost ultrasonic spray pyrolysis. Mater Chem Phys 116(2-3):638–644. CrossRefGoogle Scholar
  41. 41.
    Zhang M, Pu W, Pan S, Kevin OO, Yang C, Zhang J (2015) Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination. J Alloys Compd 648:729–735.
  42. 42.
    Mirmasoomi SR, Ghazi MM, Galedari M (2017) Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep Purif Technol 175:418–427. CrossRefGoogle Scholar
  43. 43.
    Moholkar AV, Shinde SS, Babar AR, Sim K-U, Lee HK, Rajpure KY, Patil PS, Bhosale CH, Kim JH (2011) Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells. J Alloys Comp 509(27):7439–7446. CrossRefGoogle Scholar
  44. 44.
    Sivula K, Zboril R, Formal FL, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132(21):7436–7444. CrossRefPubMedGoogle Scholar
  45. 45.
    Mishra M, Chun DM (2015) α-Fe 2 O 3 as a photocatalytic material: A review. Appl Catal A 498:126–141. CrossRefGoogle Scholar
  46. 46.
    Chemelewski WD, Mabayoje O, Tang D, Rettiec AJE, Mullins CB (2016) Bandgap engineering of Fe2O3with Cr – application to photoelectrochemical oxidation. Phys Chem Chem Phys 18(3):1644–1648. CrossRefPubMedGoogle Scholar
  47. 47.
    Pawar RC, Kim H, Lee CS (2014) Defect-controlled growth of ZnO nanostructures using its different zinc precursors and their application for effective photodegradation. Curr Appl Phys 14(4):621–629. CrossRefGoogle Scholar
  48. 48.
    Khatavkar SN, Sartale SD (2016) α-Fe2O3 thin films by liquid phase deposition: low-cost option for supercapacitor. J Solid State Electrochem 1–12.
  49. 49.
    Sawant RR, Rajpure KY, Bhosale CH (2007) Determination of CdIn2S4 semiconductor parameters by (photo)electrochemical technique. Physica B 393(1-2):249–254. CrossRefGoogle Scholar
  50. 50.
    Hankin A, Alexanderb JC, Kelsall GH (2014) Constraints to the flat band potential of hematite photo-electrodes. Phys Chem Chem Phys 16(30):16176–16186. CrossRefPubMedGoogle Scholar
  51. 51.
    Rajpure KY, Bhosale CH (2000) A study of substrate variation effects on the properties of n-Sb2S3 thin film/polyiodide/C photoelectrochemical solar cells. Mater Chem Phys 64(1):14–19. CrossRefGoogle Scholar
  52. 52.
    Shinde SS, Bhosale CH, Rajpure KY (2012) Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. J Photochem Photobiol B: Biol 113:70–77. CrossRefGoogle Scholar
  53. 53.
    Sapkal RT, Shinde SS, Waghmode TR, Govindwar SP, Rajpure KY, Bhosale CH (2012) Photo-corrosion inhibition and photoactivity enhancement with tailored zinc oxide thin films. J Photochem Photobiol B 110:15–21. CrossRefPubMedGoogle Scholar
  54. 54.
    Shinde SS, Bhosale CH, Rajpure KY (2011) Photocatalytic oxidation of salicylic acid and 4-chlorophenol in aqueous solutions mediated by modified AlFe2O3 catalyst under sunlight. J Mol Catal A Chem 347(1-2):65–72. CrossRefGoogle Scholar
  55. 55.
    Zhang M, Pu W, Pan S, Kevin OO, Yang C, Zhang J (2015) Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination. J Alloys Compd 648:719–725. CrossRefGoogle Scholar
  56. 56.
    Fang J, Xu J, Chen J, Huang X, Wang X (2016) Enhanced photocatalytic activity of molecular imprinted nano α-Fe 2 O 3 by hydrothermal synthesis using methylene blue as structure-directing agent. Colloids Surf., A 508:124–134. CrossRefGoogle Scholar
  57. 57.
    Momeni MM, Ghayeb Y, Mohammadi F (2015) Fe2O3 nanotube films prepared by anodisation as visible light photocatalytic. Surf Eng 6:452–457.
  58. 58.
    Showa B, Mukherjee N, Mondal A (2016) α-Fe2O3 nanospheres: facile synthesis and highly efficient photo-degradation of organic dyes and surface activation by nano-Pt for enhanced methanol sensing. RSC Adv 1–36.
  59. 59.
    Li J, Zhong J, He X, Huang S, Zeng J, He J, Shi W (2013) Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3. Appl Surf Sci 284:527–532. CrossRefGoogle Scholar
  60. 60.
    Bloh JZ, Dillert R, Bahnemann DW (2014) Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres. Phys Chem Chem Phys 16(12):5833–5845. CrossRefPubMedGoogle Scholar
  61. 61.
    Mohite SV, Ganbavle VV, Rajpure KY (2016) Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO 3 photoelectrode. J. Alloys Comp. 655:106–113. CrossRefGoogle Scholar
  62. 62.
    Shinde SS, Shinde PS, Bhosale CH, Rajpure KY (2011) Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. J Photochem Photobiol B 104(3):425–433. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • R. D. Suryavanshi
    • 1
  • S. V. Mohite
    • 1
  • A. A. Bagade
    • 1
  • K. Y. Rajpure
    • 1
    Email author
  1. 1.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations