Skip to main content
Log in

Towards sustainable energy: photocatalysis of Cr-doped TiO2. 5. Effect of segregation on surface versus bulk composition

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present chain of five papers considers the concept of solar-to-chemical energy conversion using TiO2-based semiconductors. The series reports the effect of chromium on the key performance-related properties of polycrystalline TiO2 (rutile), including electronic structure, photocatalytic activity, intrinsic defect disorder, electrochemical coupling and surface versus bulk properties. This work considers the effect of oxygen activity on segregation-induced surface versus bulk composition for both polycrystalline and single-crystal specimens of Cr-doped TiO2. It has been documented that annealing of Cr-doped TiO2 at 1273 K in oxidising conditions results in an enrichment and depletion of the surface layer with chromium. It is shown that the segregation-induced enrichment factor for single crystal is substantially larger than that for polycrystalline specimen. The effect is considered in terms of a theoretical model showing that surface segregation of solute in polycrystalline specimen is encumbered by its segregation to grain boundaries. It is also shown that the segregation-induced enrichment is profoundly influenced by oxygen activity. The new insight of this work involves (i) the determination of well-defined chromium segregation in Cr-doped TiO2, including single-crystal and polycrystalline specimens, after annealing in the gas phase of controlled oxygen activity, and (ii) identification of the predominant driving force of segregation of chromium in Cr-doped TiO2 that is based on electrostatic interactions between the low-dimensional surface structure (LDSS) and electrically charge segregating species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rahman K A, Bak T, Atanacio A, Ionescu M, Nowotny J (2017) Ionics, Part 1, this issue

  2. Rahman K A, Bak T, Atanacio A, Ionescu M, Nowotny J (2017) Ionics, Part 2, this issue

  3. Rahman K A, Bak T, Atanacio A, Ionescu M, Nowotny J (2017) Ionics, Part 3, this issue

  4. Rahman K A, Atanacio A, Ionescu M, J Davis, Bak T, Nowotny J (2017) Ionics, Part 4, this issue

  5. McLean D, Maradudin A (1958) Grain boundaries in metals. AIP

  6. Cotter M, Campbell S, Cao L, Egdell R, Mackrodt W (1989) Surf Sci 208:267–284

    Article  CAS  Google Scholar 

  7. Marcus H, Fine M (1972) J Am Ceram Soc 55:568–570

    Article  CAS  Google Scholar 

  8. Aoki M, Chiang YM, Kosacki I, Lee L, Tuller H, Liu Y (1996) J Am Ceram Soc 79:1169–1180

    Article  CAS  Google Scholar 

  9. Adamczyk Z, Nowotny J (1986) J Phys Chem Solids 47:11–27

    Article  CAS  Google Scholar 

  10. Haber J, Nowotny J, Sikora I, Stoch J (1984) Appl Surf Sci 17:324–330

    Article  CAS  Google Scholar 

  11. Wynblatt P, McCune RC (1988) Surface segregation in metal oxides. In: Nowotny J, Dufour LC (eds) Surface and near-surface chemistry of oxide materials. Elsevier, Amsterdam, pp 247–279

    Google Scholar 

  12. Atanacio AJ, Bak T, Nowotny J (2012) ACS Appl Mater Interfaces 4:6626–6634

    Article  CAS  Google Scholar 

  13. Jayamaha U, Atanacio A, Bak T, Nowotny J, Liu R (2015) Ionics 21:785–790

    Article  CAS  Google Scholar 

  14. Kuijers F, Ponec V (1977) Surf Sci 68:294–304

    Article  CAS  Google Scholar 

  15. Sikora I, Stolze F, Hirschwald W (1987) Surf Interface Anal 10:424–429

    Article  CAS  Google Scholar 

  16. Atanacio AJ, Nowotny J, Prince KE (2012) J Phys Chem C 116:19246–19251

    Article  CAS  Google Scholar 

  17. Atanacio AJ, Alim MA, Bak T, Ionescu M, Nowotny J (2017) J Am Ceram Soc 100:419–428

    Article  CAS  Google Scholar 

  18. Zhu J, Deng Z, Chen F, Zhang J, Chen H, Anpo M, Huang J, Zhang L (2006) Appl Catal B 62:329–335

    Article  CAS  Google Scholar 

  19. Li X, Guo Z, He T (2013) Phys Chem Chem Phys 15:20037–20045

    Article  CAS  Google Scholar 

  20. López R, Gómez R, Oros-Ruiz S (2011) Catal. Today 166:159–165

    Article  Google Scholar 

  21. Zhu H, Tao J, Dong X (2010) J Phys Chem C 114:2873–2879

    Article  CAS  Google Scholar 

  22. Chan M-H, Ho W-Y, Wang D-Y, Lu F-H (2007) Surf Coat Technol 202:962–966

    Article  CAS  Google Scholar 

  23. Peng Y-H, Huang G-F, Huang W-Q (2012) Adv Powder Technol 23:8–12

    Article  CAS  Google Scholar 

  24. Li Y, Wlodarski W, Galatsis K, Moslih SH, Cole J, Russo S, Rockelmann N (2002) Sensors Actuators B Chem 83:160–163

    Article  CAS  Google Scholar 

  25. Carpentier J-L, Lebrun A, Perdu F (1989) J Phys Chem Solids 50:145–151

    Article  CAS  Google Scholar 

  26. Bechstein R, Kitta M, Schütte J, Kühnle A, Onishi H (2009) J Phys Chem C 113:3277–3280

    Article  CAS  Google Scholar 

  27. R t S (1976) Acta Crystallogr Sect A Found Crystallogr 32:751–767

    Google Scholar 

  28. Köhler K, Engweiler J, Viebrock H, Baiker A (1995) Langmuir 11:3423–3430

    Article  Google Scholar 

  29. Bak T, Chu D, Francis AR, Li W, Nowotny J (2014) Catal Today 224:200–208

    Article  CAS  Google Scholar 

  30. Sasaki J, Peterson N, Hoshino K (1985) J Phys Chem Solids 46:1267–1283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Nowotny.

Additional information

New insight

1. The determination of well-defined chromium segregation in Cr-doped TiO2, including single-crystal and polycrystalline specimens, after annealing in the gas phase of controlled oxygen activity.

2. The results of surface and bulk analysis are reflective of the effect of oxygen activity on bulk versus surface defect disorder of TiO2-based solid solutions for both single-crystal and polycrystalline specimens.

3. The predominant driving force of segregation of chromium in Cr-doped TiO2 is based on electrostatic interactions between the low-dimensional surface structure (LDSS) and electrically charged lattice elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, K.A., Bak, T., Atanacio, A. et al. Towards sustainable energy: photocatalysis of Cr-doped TiO2. 5. Effect of segregation on surface versus bulk composition. Ionics 24, 1211–1219 (2018). https://doi.org/10.1007/s11581-017-2326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2326-0

Keywords

Navigation