Ionics

pp 1–9 | Cite as

Simultaneous voltammetric determination of droxidopa, acetaminophen, and tyrosine on hematoxylin and graphene oxide/ZnO nanocomposite-modified glassy carbon electrode

  • Hadi Beitollahi
  • Hadiseh Salimi
  • Mohammad Reza Ganjali
Original Paper
  • 32 Downloads

Abstract

Hematoxylin was used in combination with graphene oxide/ZnO nanocomposites as the adhesives for fabricating sensitivity-enhanced electrochemical droxidopa sensor. The electrochemical method showed an excellent character for electrocatalytic oxidization of droxidopa in the presence of acetaminophen and tyrosine. In addition, the experimental parameters such as pH values and the scan rate were optimized. Due to the fine characteristics of modified electrode, a good linear relationship between the anodic peak current and droxidopa concentration in the range 0.075–800.0 μM was observed. The detection limit (3σ) obtained by square wave voltammetry was 4.5 × 10−8 M (S/N = 3). This modified electrode showed excellent selectivity for the determination of droxidopa in the presence of acetaminophen and tyrosine. The prepared sensor was used for determination of droxidopa, acetaminophen, and tyrosine in the real samples.

Keywords

Droxidopa Acetaminophen Tyrosine Hematoxylin Glassy carbon electrode 

References

  1. 1.
    Biaggioni I, Freeman R, Mathias CJ, Low P, Hewitt LA, Kaufmann H (2015) Randomized withdrawal study of patients with symptomatic neurogenic orthostatic hypotension responsive to droxidopa. Hypertension 65:101–107CrossRefGoogle Scholar
  2. 2.
    Kaufmann H, Freeman R, Biaggioni I, Low P, Pedder S, Hewitt LA (2014) Effects of the novel norepinephrine prodrug, droxidopa, on ambulatory blood pressure in patients with neurogenic orthostatic hypotension. Neurology 83:328–335CrossRefGoogle Scholar
  3. 3.
    Hauser RA, Isaacson S, Lisk JP, Hewitt LA, Rowse G (2015) Droxidopa for the short-term treatment of symptomatic neurogenic orthostatic hypotension in Parkinson’s disease (NOH306B). Mov Disord 30:646–654CrossRefGoogle Scholar
  4. 4.
    Saito S, Shioda K, Nishijima K (2012) Dopamine dysregulation syndrome including mania related to coadministration of droxidopa. J Clin Psychopharmacol 32:428–429CrossRefGoogle Scholar
  5. 5.
    Perez-Lloret RMV, Pavy-Le Traon A (2014) Droxidopa for the treatment of neurogenic orthostatic hypotension and other symptoms of neurodegenerative disorders. Expert Opin Orphan Drugs 2:509–521CrossRefGoogle Scholar
  6. 6.
    Wang H, Yang G, Zhou J, Pei J, Zhang Q, Song X, Sun Z (2016) Development and validation of a UPLC-MS/MS method for quantitation of droxidopa in human plasma: application to a pharmacokinetic study. J Chromatogr B 1027:234–238CrossRefGoogle Scholar
  7. 7.
    Keating GM (2015) Droxidopa: a review of its use in symptomatic neurogenic orthostatic hypotension. Drugs 75:197–206CrossRefGoogle Scholar
  8. 8.
    Beitollahi H, Nekooei S (2016) Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis 28:645–653CrossRefGoogle Scholar
  9. 9.
    Garcia Armada MP, Vallejo E, Villena C, Losada J, Casado CM, Alonso B (2016) New acetaminophen amperometric sensor based on ferrocenyl dendrimers deposited onto Pt nanoparticles. J Solid State Electrochem 20:1551–1563CrossRefGoogle Scholar
  10. 10.
    Tajik S, Taher MA, Beitollahi H (2014) Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sens Actuator B 197:228–236CrossRefGoogle Scholar
  11. 11.
    Tefera M, Geto A, Tessema M, Admassie S (2016) Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Food Chem 210:156–162CrossRefGoogle Scholar
  12. 12.
    Klimek-Turek A, Sikora M, Rybicki M, Dzido TH (2016) Frontally eluted components procedure with thin layer chromatography as a mode of sample preparation for high performance liquid chromatography quantitation of acetaminophen in biological matrix. J Chromatogr A 1436:19–27CrossRefGoogle Scholar
  13. 13.
    Kalambate PK, Sanghavi BJ, Karna SP, Srivastava AK (2015) Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sens Actuator B 213:285–294CrossRefGoogle Scholar
  14. 14.
    Chitravathi S, Kumara Swamy BE, Mamatha GP, Chandrashekar BN (2012) Electrocatalytic oxidation of tyrosine at poly(threonine)-film modified carbon paste electrode and its voltammetric determination in real samples. J Mol Liq 172:130–135CrossRefGoogle Scholar
  15. 15.
    Quintana C, Suarez S, Hernandez L (2010) Sensors Actuators B Chem 149:129–135CrossRefGoogle Scholar
  16. 16.
    Joondan N, Laulloo SJ, Caumul P, Marie DEP, Roy P, Hosten E (2016) Synthesis, physicochemical properties and membrane interaction of novel quaternary ammonium surfactants derived from l-tyrosine and l-DOPA in relation to their antimicrobial. Colloids Surf A Physicochem Eng Asp 511:120–134CrossRefGoogle Scholar
  17. 17.
    James LP, Mayeux PR, Hinson JA (2003) Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 31:1499–1506CrossRefGoogle Scholar
  18. 18.
    Zhang WZ, Lang C, Kaye DM (2007) Determination of plasma free 3-nitrotyrosine and tyrosine by reversed-phase liquid chromatography with 4-fluoro-7-nitrobenzofurazan derivatization. Biomed Chromatogr 21:273–278CrossRefGoogle Scholar
  19. 19.
    Beitollahi H, Raoof JB, Hosseinzadeh R (2011) Application of a carbon-paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid. Electroanalysis 23:1934–1940CrossRefGoogle Scholar
  20. 20.
    Qu F, Yang M, Rasooly A (2016) Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the Alzheimer’s related protease β-secretase. Anal Chem 88:10559–10565CrossRefGoogle Scholar
  21. 21.
    Beitollahi H, Ghofrani Ivari S, Torkzadeh-Mahani M (2016) Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier. Mater Sci Eng C 69:128–133CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Zheng Y, Kong R, Xia L, Qu F (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388CrossRefGoogle Scholar
  23. 23.
    Molaakbari E, Mostafavi A, Beitollahi H, Alizadeh R (2014) First electrochemical report for simultaneous determination of norepinephrine, tyrosine and nicotine using a nanostructure based sensor. Analyst 139:4356–4364CrossRefGoogle Scholar
  24. 24.
    Chan KF, Lim HN, Shams N, Jayabal S, Pandikumar A, Huang NM (2016) Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen. Mater Sci Eng C 58:666–574CrossRefGoogle Scholar
  25. 25.
    Uzun D, Hasdemir E (2017) Selective and sensitive determination of dopamine via suppressing ascorbic acid using an N-(1-H-indole-3yl) methylene thiazole-2-amine thin film-modified glassy carbon electrode. Ionics 23:759–765CrossRefGoogle Scholar
  26. 26.
    Mahmoudi Moghaddam H, Beitollahi H, Tajik S, Soltani H (2015) Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid. Electroanalysis 27:2620–2628Google Scholar
  27. 27.
    Cheemalapati S, Karuppiah C, Chen SM (2014) A sensitive amperometric detection of dopamine agonist drug pramipexole at functionalized multi-walled carbon nanotubes (f-MWCNTs) modified electrode. Ionics 20:1599–1606CrossRefGoogle Scholar
  28. 28.
    Beitollahi H, Ebadinejad F, Shojaie F, Torkzadeh-Mahani M (2016) A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide. Anal Methods 8:6185–6193CrossRefGoogle Scholar
  29. 29.
    Yang YJ, Li W (2015) High sensitive determination of theophylline based on manganese oxide nanoparticles/multiwalled carbon nanotube nanocomposite modified electrode. Ionics 21:1121–1128CrossRefGoogle Scholar
  30. 30.
    Beitollahi H, Gholami A, Ganjali MR (2015) Preparation, characterization and electrochemical application of Ag-ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. Mater Sci Eng C 57:107–112CrossRefGoogle Scholar
  31. 31.
    Zare HR, Nasirizadeh N (2010) Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode. Sensors Actuators B Chem 143:666–672CrossRefGoogle Scholar
  32. 32.
    Litvin VA, Minaev BF, Baryshnikov GB (2015) Synthesis and properties of synthetic fulvic acid derived from hematoxylin. J Mol Struct 1086:25–33CrossRefGoogle Scholar
  33. 33.
    Sioi M, Bolosis A, Kostopoulou F, Poulios I (2006) Photocatalytic treatment of colored wastewater from medical laboratories: photocatalytic oxidation of hematoxylin. J Photochem Photobiol 184:18–25CrossRefGoogle Scholar
  34. 34.
    Qu F, Sun H, Zhang S, You J, Yang M (2012) Electrochemical sensing platform based on palladium modified ceria nanoparticles. Electrochim Acta 61:173–178CrossRefGoogle Scholar
  35. 35.
    Sun H, You J, Yang M, Qu F (2012) Synthesis of Pt/Fe3O4–CeO2 catalyst with improved electrocatalytic activity for methanol oxidation. J Power Sour 205:231–234CrossRefGoogle Scholar
  36. 36.
    Jahani S, Beitollahi H (2016) Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrode. Electroanalysis 28:2022–2028CrossRefGoogle Scholar
  37. 37.
    Beitollahi H, Tajik S, Jahani S (2016) Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite. Electroanalysis 28:1093–1099CrossRefGoogle Scholar
  38. 38.
    Qu F, Lu H, Yang M, Deng C (2011) Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement. Biosens Bioelectron 26:4810–4814CrossRefGoogle Scholar
  39. 39.
    Beitollahi H, Garkani Nejad F (2016) Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis 9:2237–2244CrossRefGoogle Scholar
  40. 40.
    Kumar SA, Chen SM (2007) Fabrication and characterization of Meldola’s blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential. Anal Chim Acta 592:36–44CrossRefGoogle Scholar
  41. 41.
    Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  42. 42.
    Galus Z (1976) Fundamentals of electrochemical analysis. Ellis Horwood, New YorkGoogle Scholar
  43. 43.
    Tajik S, Taher MA, Beitollahi H (2013) Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode. Sensors Actuators B Chem 188:923CrossRefGoogle Scholar
  44. 44.
    Gupta VK, Sadeghi R, Karimi F (2013) A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples. Sensors Actuators B Chem 186:603–609CrossRefGoogle Scholar
  45. 45.
    Baghayeri M (2017) Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital. Sensors Actuators B Chem 240:255–263CrossRefGoogle Scholar
  46. 46.
    Movlaee K, Beitollahi H, Ganjali MR, Norouzi P (2017) Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate. J Electrochem Soc 164:H407–H412CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hadi Beitollahi
    • 1
  • Hadiseh Salimi
    • 2
  • Mohammad Reza Ganjali
    • 3
    • 4
  1. 1.Environment Department, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
  2. 2.Department of ChemistryGraduate University of Advanced TechnologyKermanIran
  3. 3.Center of Excellence in ElectrochemistryUniversity of TehranTehranIran
  4. 4.Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations